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ABSTRACT

Wind is an increasingly important piece of electricity generation portfolios worldwide. This

dissertation describes advances related to the electromechanical energy conversion system of

wind turbines, and the electric transmission system for offshore wind power plants. The con-

tributions of this work are the following: (i) We propose that the power electronics topology

commonly called the “Vienna rectifier” can be used for improved variable-speed wind energy

conversion. Theoretical analysis is conducted to show how a Vienna rectifier could drive ei-

ther a squirrel-cage induction generator or a permanent-magnet synchronous generator-based

wind turbine. Computer simulations and experimental results demonstrate the feasibility of

the proposed topology and potential improvements in energy conversion efficiency. (ii) We

propose a novel low-frequency ac (LFAC) transmission system for offshore wind power plants.

A system design and control method is set forth, and key system operational characteristics

are illustrated via computer simulations. The LFAC system constitutes a promising option

for medium- or long-distance transmission, and could be an alternative to high-voltage dc

(HVDC) transmission. (iii) We develop a technique that utilizes a field-programmable gate

array (FPGA) as a dynamic simulation platform for wind turbines. A doubly fed induction

generator-based wind turbine simulation is implemented on an FPGA board, in order to verify

the effectiveness and performance advantage of this approach.
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CHAPTER 1. INTRODUCTION

Electricity generation from wind is developing rapidly. By the end of 2011, the cumulative

installed wind power capacity in the United States has reached 46.9 GW and wind energy

accounted for 2.9% of total electricity production. The long-term goal is to obtain 20% of the

U.S. electricity needs from wind by 2030 [1]. An estimate from the National Renewable Energy

Laboratory (NREL) shows that wind power could be able to supply 36.6% of total electricity

needs by 2050 [2]. The dramatic increase of wind power production and ambitious growth goals

place increasingly stringent requirements on the performance of wind power technology. This

dissertation describes advances in various aspects of wind energy conversion and transmission

technology, as outlined in the following paragraphs.

Wind Energy Conversion Systems with Vienna Rectifier

The wind energy conversion system (WECS) converts the wind stream’s mechanical energy

to electrical energy inside the wind turbine. Here, our focus is on the electrical subsystem of

the WECS, i.e., from the shaft to the power system terminals. A variety of electric generator

types (e.g., squirrel-cage or wound-rotor induction machines, and synchronous machines) are

used in fixed-speed or variable-speed WECS. Fixed-speed WECS are directly connected to

electric power grids, whereas variable-speed WECS are connected either through a fully-rated

power electronic converter (for squirrel-cage induction machines or synchronous machines) or

a partially-rated power electronic converter (for doubly-fed induction generators (DFIGs)) [3].

In general, variable-speed operation is achieved by using power electronic converters with a

back-to-back configuration [4,5]. Nowadays, variable-speed WECS constitute the most popular

option—at least for MW-scale turbines—since they allow maximum energy extraction from the
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wind, and because they can provide enhanced support to the power grid [6]. In this first part of

the dissertation, we set forth a novel power electronics topology, called the “Vienna rectifier,”

for wind power generation.

Back-to-back six-switch two-level PWM converters are used in the majority of cases as a

power electronics interface between individual wind turbines and the power grid [6]. Multi-

level converters, such as the back-to-back three-level neutral-point-clamped converter, have

also been proposed [7, 8]. The utilization of multi-level converters can lead to designs with

higher power ratings and improved power quality. However, the large number of power switches

significantly increases cost and control complexity [9]. In this work, we have identified the three-

phase/three-switch/three-level PWM rectifier [10] (commonly called the “Vienna” rectifier)

as a good candidate for further improving energy conversion efficiency and the reliability of

generator drive systems. The Vienna rectifier has been applied mostly as a power supply

module and as an active front-end stage in motor drives [11]. This topology can generate three

voltage levels with reduced number of controlled power switches (only three), thus simplifying

the control and reducing cost (although more power diodes are needed). An another advantage

is that it leads to reduced blocking voltage stress on the power semiconductors, which can

enhance reliability.

Low-Frequency AC (LFAC) Transmission System for Offshore Wind Power

Onshore geographic sites that are optimal for constructing wind power plants are often in

remote locations, typically far from the major load centers. In the United States, for example,

the largest potential for onshore wind energy exists in the Midwest, hundreds of miles away

from the large load centers of the East and West coasts. In addition, “good” offshore sites

with abundant wind potential and/or other attractive environmental characteristics could be

located tens of miles away from the coasts. Hence, the transmission of large amounts of wind

power over long distances has become a timely and significant technical challenge [?,12–15] In

this second part of the dissertation, a novel transmission technology specifically for offshore

wind power plants is proposed.
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Offshore wind power is expected to represent a significant component of the future electric

generation portfolio due to large space availability and better wind energy potential in offshore

locations [2, 16]. As estimated from NREL, 4,150 GW of potential wind turbine nameplate

capacity from offshore wind resources are available in the United States [17]. In the next 10–20

years, a dramatic increase of offshore wind power plants is expected to occur, conditional on the

reduction of installation costs and the advent of necessary technological breakthroughs. Plans

to establish offshore wind power plants with power ratings up to 1,500 MW, at distances up to

ca. 150 km from the coast have been recently proposed in Germany [18]. In the United States,

ca. 20 projects representing more that 2 GW of capacity are in the planing and permitting

process [19].

For an offshore wind power plant, as shown in Fig. 1.1, a medium-voltage ac or dc grid can

be used to collect the wind turbines’ power and deliver it to an offshore platform within the

plant [6,20]. 1 A transmission system is necessary to integrate the plant with the onshore main

power grid. Presently, high-voltage ac (HVAC) and high-voltage dc (HVDC) are well estab-

lished transmission technologies [13]. HVAC is a conventional and convenient strategy because

it is relatively straightforward to design the protection system, and it is easy to change voltage

levels using transformers. HVAC is a suitable solution for delivering onshore wind power over

long distances using overhead transmission lines. However, when underground ac transmission

cables (for onshore plants) or submarine cables (for offshore plants) need to be used, HVAC is

no longer a technically feasible option. In such applications, the cable’s high capacitance leads

to considerable charging current, which in turn reduces the active power transmission capacity

of the cable, and limits the transmission distance. Currently, HVAC is widely adopted for

short offshore transmission distances (e.g., 50–75 km) [12]. To overcome this disadvantage of

HVAC, the HVDC technology has been developed. Depending on the power electronic devices

used in the converters at the two ends of an HVDC system, it can be classified into two types:

(i) line-commutated converter HVDC (LCC-HVDC) using thyristors, and (ii) voltage source

converter HVDC (VSC-HVDC) using self-commutated devices (e.g., IGBTs) [21]. Currently,

1It is interesting to note that the proposed Vienna rectifier-based WECS discussed previously could be
utilized to establish a dc collection grid. This could be a subject of future research.
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Figure 1.1 Power collection and transmission for offshore wind power
plants.

HVDC is widely applied for delivering large amounts of power (typically around 1 GW for

LCC-HVDC and 400 MW for VSC-HVDC) over long distances (e.g., greater than 100 km, es-

pecially for offshore wind power), since it imposes essentially no limit on transmission distance

due to the absence of charging current in dc power cables [14].

Besides HVAC and HVDC, a low-frequency ac (LFAC) transmission system has also been

recently proposed [22–25]. Here, low frequency refers to a frequency lower than the nominal

power frequency (60 or 50 Hz). Since a thyristor-based cycloconverter is used as the frequency

converter interface between the low-frequency side and the power frequency side, the trans-

mission frequency is preferably set to be one third of the nominal power frequency (i.e., 20

or 16.66 Hz) in order to reduce the harmonics [22, 26]. In this work, we have proposed a new

LFAC transmission system to connect dc collection-based offshore wind power plants with the

main power grid. Within the plant (the sending end), a dc/ac 12-pulse thyristor-based inverter

is used to generator low-frequency ac power. At the onshore substation (the receiving end), a

three-phase bridge (6-pulse) cycloconverter is used as an interface.
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In general, the LFAC system has higher reliability and lower cost compared to VSC-HVDC,

and can transmit power over longer distances compared to an HVAC system. The LFAC

transmission could be optimal for medium distance transmission (somewhere in between HVAC

and HVDC) [25].

FPGA-based Simulation Platform

Modeling and simulation is indispensable for designing and studying complex systems such

as wind turbines and power transmission schemes, especially when experiments with actual

components are usually prohibitively expensive or impossible to conduct [27–33]. In the past,

when fixed-speed wind turbines were mainly used, modeling and simulation studies was rel-

atively easy to conduct, and conventional offline simulation platforms (such as PSS/E) were

accurate enough to show phenomena of interest [34–36]. However, after the introduction of

power electronic converters in wind applications, more sophisticated simulation platforms are

required, especially when detailed switching-level simulations are needed. Although conven-

tional offline simulation platforms (such as Matlab/Simulink and PSCAD) can still be used,

the simulation speed is very low due to high computational burden. Recently, real-time sim-

ulators (such as RTDS and RT-LAB) have been developed to improve simulation efficiency

and facilitate system analysis [37–40]. However, the simulation of large-scale systems requires

bulky hardware, which raises the cost and limits the application of these simulators. This last

part of the dissertation sets forth the basics of a novel technique for simulating wind turbines,

making use of FPGAs.

A field-programmable gate array (FPGA) is a reconfigurable digital logic platform. Due to

its inherently parallel hardware architecture, FPGA allows the parallel execution of millions of

bit-level operations in a spatially programmed environment. Research has been under way on

the modeling and real-time simulation of various electrical power components using FPGAs as

computational [41–45] and non-computational [46,47] devices.

The dynamic (time-domain) simulation of electrical power systems involves the numerical

solution of a set of ordinary differential equations (ODEs). On the other hand, the various
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numerical integration algorithms (i.e., ODE solvers) usually only require additions and multi-

plications, which are generally simple mathematical operations to implement on a digital plat-

form. Moreover, complex systems requiring the simultaneous solution of numerous ODEs for

simulation are inherently conducive to a parallel mapping to physical computational resources.

By mapping an ODE solver on an FPGA board (a process that is called hardware implemen-

tation), we can increase efficiency by reducing the overhead introduced by software, which

leads to substantial simulation speed gains compared to using personal computers. Therefore,

FPGA-based simulation represents an attractive option for simulating more complex electrical

power and power electronics-based systems.

Dissertation Organization

The remainder of this dissertation is organized as follows, where each chapter represents

either a journal or conference publication.

Chapter 2 investigates the feasibility of using a topology with a squirrel-cage induction gen-

erator and a Vienna rectifier for a wind energy conversion system. Details about the operation

of Vienna rectifiers are provided in this chapter. A comparison between the proposed system

and a conventional system that uses the classical six-switch two-level converter is performed

to illustrate the expected efficiency improvement.

Chapter 3 proposes a new WECS topology that uses a Vienna rectifier as the generator-

side converter for a squirrel-cage induction generator (SCIG). The operation of a SCIG/Vienna

rectifier configuration is analyzed in detail. A power converter loss evaluation is performed to

show the efficiency improvement. Experimental results obtained from a laboratory prototype

are used to validate the theoretical analysis and feasibility of the proposed system.

Chapter 4 analyzes a WECS topology that uses a Vienna rectifier as the generator-side

converter for a permanent-magnet synchronous generator (PMSG). A theoretical analysis of

the PMSG/Vienna rectifier configuration is provided. Also, we devise a control strategy that

leads to maximum efficiency, based on detailed power loss calculations for the power electronic

converter and the generator. Experimental results are provided to demonstrate the feasibility



www.manaraa.com

7

of the proposed system.

Chapter 5 proposes a new LFAC transmission system to connect dc collection-based offshore

wind power plants with the main power grid. The system design and control are addressed.

A comparison between the proposed LFAC system and the conventional HVAC system is

performed.

Chapter 6 presents the implementation of a dynamic simulation of a doubly-fed induction

generator (DFIG)-based wind turbine on an FPGA development board. The basic steps of

designing an explicit fourth-order Runge–Kutta numerical ordinary differential equation solver

on the FPGA platform are outlined. The FPGA simulation results and speed improvement

are validated versus a Matlab/Simulink simulation.

Chapter 7 summarizes the contributions of this work and recommends further investigations

for future work.
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CHAPTER 2. INDUCTION GENERATOR WITH VIENNA

RECTIFIER: FEASIBILITY STUDY FOR WIND POWER

GENERATION

A paper published in the Proceedings of the IEEE International Conference on Electrical

Machines, 2010

Hao Chen1 and Dionysios C. Aliprantis

2.1 Abstract

This paper investigates the feasibility of using a topology with a squirrel-cage induction

machine and a Vienna rectifier for a wind energy conversion system. Simulation results re-

veal that this configuration is advantageous with respect to energy efficiency and reliability

compared to a traditional six-switch two-level inverter.

2.2 Introduction

Variable-speed wind energy conversion systems (WECS) are commonly used because they

allow maximum power extraction from the wind [48]. Configurations using various machine

types (e.g., squirrel-cage or wound-rotor induction machines, and permanent magnet syn-

chronous machines) have been studied extensively [4, 5, 49, 50]. Back-to-back six-switch two-

level PWM converters are often used. Multi-level converters, such as the back-to-back three-

level neutral-point-clamped converter, have been used as well [8]. The utilization of multi-level

converters can lead to designs with higher power ratings and improved power quality. However,

the large number of power switches significantly increases cost and control complexity [9].

1Primary researcher and author
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The three-phase/switch/level PWM (Vienna) rectifier [10], has been applied mostly as a

power supply module and as an active front-end stage in motor drives [11]. The Vienna rectifier

can generate three voltage levels with decreased number of power switches (only three) thus

simplifying the control, and leads to reduced blocking voltage stress on the power semiconduc-

tors.

In this paper, the feasibility of using the Vienna rectifier in a variable-speed WECS as

the generator drive is investigated. A topology with a squirrel-cage induction generator and

a Vienna rectifier is proposed. This could be utilized, for example, to establish dc grids in

offshore wind power plants with HVDC transmission [20,51,52]. Two case studies are devised

to illustrate the operational characteristics of the proposed system. This configuration is

compared to the conventional six-switch two-level converter system by way of simulations. It

is shown that the Vienna-rectifier topology has better efficiency, and the potential for better

reliability.

2.3 Steady State Analysis

2.3.1 Wind Turbine and Induction Generator

It is well known that the mechanical power Pm extracted from the wind can be expressed

as [48]:

Pm = 1
2ρπR

2
wcp (λ, γ) v

3
w , (2.1)

where vw is the upstream wind speed; ρ is the air density; Rw is the wind turbine radius;

cp (λ, γ) is the performance coefficient; γ is the pitch angle in degrees; and λ is the tip-speed

ratio given by λ = ωwRw/vw, where ωw is the blades’ angular velocity. In this study, pitching

of the blades is not considered, so γ = 0, and cp(λ, 0) attains its maximum value cmax
p = 0.48

for an optimal λo = 8.10. In a variable-speed wind turbine, the blades’ speed is changed pro-

portionally to the wind speed such that λo is always maintained, in order to extract maximum

power from the wind [5]. The relation between λo and the optimal wind turbine rotor speed
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ωwo (or the optimal generator electrical speed ωro) is given by

λo =
ωwoRw

vw
=

ωro

vw
K1 , (2.2)

where K1 =
2Rw

GP
, G is the gearbox ratio, and P is the number of generator poles. Using (3.2)

to express vw in terms of ωro and λo, (4.1) becomes

Pmax
m = K2c

max
p

(

ωro

λo
K1

)3

, (2.3)

where K2 =
1
2ρπR

2
w. Therefore, the mechanical torque applied to the generator shaft has a

quadratic speed function:

Tmax
m =

P

2

Pmax
m

ωro
=

PK2K
3
1c

max
p

2λ3
o

ω2
ro . (2.4)

Using generator convention for the stator currents, the input impedance of the induction

machine is given by

Zm =
Ṽm

−Ĩm
= R+ jX , (2.5)

where Ṽm and Ĩm are the machine’s terminal voltage and current. The classical induction

machine model [53] yields

R = Rs +
(ωeLm)2R

′

r

s
(

R′

r

s

)2
+ (ωeL′

r)
2

(2.6)

X = ωeLs −
ωeL

′
r(ωeLm)2

(

R′

r

s

)2
+ (ωeL′

r)
2
. (2.7)

Note that R < 0 for generator action, and X > 0; hence, the power factor angle α =

tan−1(X/R) is between 90◦ and 180◦. Since −Ĩm lags Ṽm by α, it follows that Ĩm leads

Ṽm by 180◦ − α.

If the rotor field-oriented control [53] is adopted (also refer to Section 2.4 for notation), the

slip frequency ωs is set to

ωs =
R′

rI
e
qs

L′
rI

e
ds

, (2.8)

and the d-axis stator current Ieds is set to

Ieds = − Λ′
r

Lm
, (2.9)
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Figure 2.1 Machine current leading angle (for rotor field-oriented control).

where Λ′
r is the machine’s rated rotor flux. The electromagnetic torque of the machine is

Te =
3

2

P

2

Lm

L′
r

Λ′
rI

e
qs . (2.10)

Since Te is equal to Tmax
m given by (3.4) at the steady state, the q-axis stator current Ieqs can

be expressed as

Ieqs =
2K2K

3
1c

max
p L′

r

3λ3
oLmΛ′

r

ω2
ro . (2.11)

Substitution of (3.5) and (3.8) into (2.8) yields

ωs = −
2K2K

3
1c

max
p R′

r

3λ3
oΛ

′2
r

ω2
ro . (2.12)

This analysis shows that the electrical frequency, ωe = ωro + ωs, can be related to the wind

speed via (3.2).

Using (2.6), (2.7), and (2.12), one can compute the angle for which Ĩm leads Ṽm for different

ωe (or wind speeds); this is shown in Fig. 2.1. The significance of this calculation will be

explained in a later section. Note that the parameters of the machine and wind turbine are

provided in Appendix A.
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2.3.2 Vienna Rectifier

The topology of a three-phase/switch/level PWM (Vienna) rectifier is shown in Fig. 4.1.

Taking the center point N of the DC-link voltage as the reference point, the rectifier input

phase voltage vkN , which depends on both the switching state of the corresponding power

switch Sk and the sign of the corresponding phase current ik, is given by [54]

vkN =











sgn{ik}Vo

2 if Sk = 0

0 if Sk = 1
(2.13)

where the index k can be A,B, or C. Note that the blocking voltage stress of the switches and

diodes in Fig. 4.1 is only half of the total DC-link voltage Vo.

For a balanced set of input phase currents (with iA =
√
2I cosϕ), a sign reversal of the three

phase currents (iA, iB , iC) takes place every π
3 electrical radians. Thus, according to (2.13),

the input phase voltage vkN is shown in Table 2.1 for eight switching state combinations, and

for ϕ ∈ (−π
6 ,

π
6 ). The variable v̄ in Table 2.1 represents the complex space vector of the input

phase voltages, which is given by [55]:

v̄ =
2

3

(

vAN + avBN + a2vCN

)

(2.14)

where a = ej
2π
3 . The voltage space vectors in Table 2.1 form a hexagon (i.e., A-B-C-D-E-

F) in the complex plane, as shown in Fig. 2.3. For the next interval ϕ ∈ (π6 ,
π
2 ), a similar

derivation results in the hexagon A-G-H-I-C-J, which can be considered as resulting from a

counter-clockwise rotation of the hexagon A-B-C-D-E-F by π
3 .

When the rectifier input current space vector ī, which is

ī =
2

3

(

iA + aiB + a2iC
)

=
√
2I (cosϕ+ j sinϕ) , (2.15)

is located in any one of the six intervals, then the possible rectifier input voltage space vector

must be located in the corresponding hexagon. For example, if ī is located in the interval

ϕ ∈ (−π
6 ,

π
6 ), the possible input voltage space vector must be located in the hexagon A-B-C-

D-E-F. However, if ī is on a hexagon boundary (e.g., ϕ = −π
6 ), the possible input voltage

space vector must be located in the overlap of two adjacent hexagons (e.g., the parallelogram
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Figure 2.2 Power circuit of three-phase/switch/level PWM (Vienna) rec-
tifier.

A-J-E-F in Fig. 2.3). Therefore, the Vienna rectifier allows the input current (Ĩ in Fig. 3.1) to

lead or lag the input voltage (Ṽ in Fig. 3.1) by no more than 30◦.

2.3.3 The Proposed Configuration

In principle, a Vienna rectifier could be connected directly with an induction generator.

However, the 30◦ angle constraint, shown in Fig. 2.1, would make the minimum possible fre-

quency, ωe,min, a fairly large value, thus greatly narrowing the operation range. In other words,

the Vienna rectifier cannot supply enough reactive power to the machine for ωe < ωe,min. One

possible way to provide reactive power is by connecting a capacitor bank across the machine

terminals, as shown in Fig. 3.1. The connection of the capacitor bank can make the voltage

(Ṽ ) and current (Ĩ) at the AC side of the Vienna rectifier satisfy the angle constraint. The

equivalent input impedance of the proposed system is

Z =
Ṽ

−Ĩ
= (R+ jX) //

(

1

jωeC

)

+ jωeL =
R+ jXeq

(1− ωeCX)2 + (ωeCR)2
(2.16)

where

Xeq =
(

ω2
eLC − 1

) [

ωeC
(

R2 +X2
)

− 2X
]

+ ωeL−X . (2.17)

Note that R < 0 for generator action, but Xeq can acquire both positive and negative

values. In order to satisfy the Vienna rectifier constraint, Ĩ must not lead or lag Ṽ by more
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Table 2.1 Input Phase Voltages for ϕ ∈ (−π
6 ,

π
6 )

SA SB SC vAN vBN vCN v̄

0 0 0 Vo

2 −Vo

2 −Vo

2
2Vo

3

0 0 1 Vo

2 −Vo

2 0 Vo

2 (1− j 1√
3
)

0 1 0 Vo

2 0 −Vo

2
Vo

2 (1 + j 1√
3
)

0 1 1 Vo

2 0 0 Vo

3

1 0 0 0 −Vo

2 −Vo

2
Vo

3

1 0 1 0 −Vo

2 0 Vo

2 (
1
3 − j 1√

3
)

1 1 0 0 0 −Vo

2
Vo

2 (
1
3 + j 1√

3
)

1 1 1 0 0 0 0
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Figure 2.3 Voltage space vectors of the Vienna rectifier input phase volt-
ages.
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Figure 2.4 Proposed configuration.

than 30◦. This leads to the following inequality constraint:

|Xeq| ≤ |R| tan 30◦ = |R|√
3
. (2.18)

The equivalent resistance and reactance of the machine (R and X) depend on the slip s and

the synchronous speed ωe. Hence, four variables (s, ωe, C, and L) should be appropriately

chosen to satisfy (2.18) in order to make the proposed system operate normally.

The resonant frequency of the LC filter is

ωf =
1√
LC

. (2.19)

Using (2.19) to express L in terms of C and ωf , (2.17) becomes

Xeq =

(

ω2
e

ω2
f

− 1

)

[

ωeC
(

R2 +X2
)

− 2X
]

+
ωe

ω2
fC

−X . (2.20)

With a choice of ωf = 2.5ωb, the constraint C vs. ωe can be calculated. The two blue curves

in Fig. 2.5 correspond to

Xeq = ±|R|√
3
. (2.21)

So, the choice of a certain capacitance confines the operational range of ωe.

2.3.3.1 Case 1

The capacitance C1 can be selected to obtain the maximum operational range of ωe (i.e.,

ωe1 to ωe,max) as shown in Fig. 2.5. C1 can be calculated using (2.6), (2.7), (2.20), and (2.21).
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Figure 2.5 Capacitance constraint curves (rotor field-oriented control).

The inductance L1 corresponding to C1 is obtained by (2.19). The same set of equations can

be used to compute ωe1.

After C1 and L1 are determined, a steady-state analysis can provide the variation of |Ṽm|,

|Ṽ |, |Ĩm|, and |Ĩ|, as shown in Fig. 2.6. Let β denote the angle by which Ĩ lags Ṽ . According to

the Vienna rectifier analysis, β varies from −30◦ to 30◦ when ωe varies from ωe1 to ωe,max, as

shown by the blue curve in Fig. 2.7. From Fig. 2.3 and geometric considerations, the maximum

possible magnitude of v̄ for steady-state operation can be determined as

|v̄|max =
Vo

2
√
3 cos(60◦ − |β|)

. (2.22)

This equation can be used to establish the level of required DC-link voltage. From Figs. 2.6

and 2.7, it can be seen that maximum voltage |Ṽ |max occurs when β = 30◦. This angle also

coincides with the minimum voltage that the Vienna rectifier can generate, which is Vo/3

according to (2.22). Therefore, the DC-link voltage of the rectifier Vo must satisfy

Vo

3
≥ |Ṽ |max . (2.23)

The above inequality implies that Vo has to be set as a fairly large value (close to 3 p.u.) in

order to make the generator operate normally at ωe,max.
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2.3.3.2 Case 2

On the other hand, (2.22) shows that |v̄|max obtains its largest value, Vo/
√
3, for β = 0◦.

Therefore, one can select the capacitance C2 such that β = 0◦ at ωe,max, as shown in Fig. 2.5

and by the red curve in Fig. 2.7. The value of C2 can be calculated using (2.6), (2.7), (2.20),

and Xeq = 0. In this case, Vo must satisfy

Vo√
3
≥ |Ṽ |max . (2.24)

The value of |Ṽ |max can be obtained by using the new values of C2 and the corresponding L2,

as depicted in Fig. 2.8. The minimum frequency ωe2 can be determined similarly to ωe1. Since

β = −30◦ at ωe2, the second constraint for Vo is

Vo

3
≥ |Ṽ |min , (2.25)

where |Ṽ |min corresponds to ωe2 in Fig. 2.8. Combining (2.24) and (2.25) yields that Vo must

satisfy

Vo ≥ max
(√

3|Ṽ |max, 3|Ṽ |min

)

. (2.26)

The required DC-link voltage for Case 2 is lower than that of Case 1. However, the operational

speed range for Case 1 is larger than that of Case 2.

2.4 Control Strategy

The rotor field-oriented control is applied for the proposed system. The control structure is

shown in Fig. 3.11. The reference frame transformation matrices Ks
s,

sKe, and eKs are defined

in [53]. The d-axis of the synchronous reference frame is aligned with the rotor flux vector.

The speed is controlled in order to extract maximum power from the wind. The rotor flux is

set to a rated value. The description of the flux observer is provided in [55].

Various modulation methods exist to form the sinusoidal currents iABC feeding into the

Vienna rectifier, such as continuous or discontinuous space vector modulation [56–58]. Herein,

the hysteresis modulation is applied for simplicity. As shown in Fig. 3.11,

S′
k =











0 if ik > i∗k + h

1 if ik < i∗k − h
(2.27)
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Figure 2.8 Voltage and current variations corresponding to Case 2.

where ±h defines the hysteresis band. Due to (2.13), the control signals Sk of the switches are

given by [54]:

Sk =











S′
k if i∗k ≥ 0

S′
k if i∗k < 0

(2.28)

Herein, the balancing of the center point (N) voltage is not considered for simplicity. Note

that this issue can be easily solved by adding a zero-sequence component to i
∗
ABC [54]. The

DC-link voltage Vo can be controlled by a grid-side converter, which is not shown in Fig. 3.11.

2.5 Simulation Results

To demonstrate the validity and characteristics of the proposed WECS, simulations have

been performed using Matlab/Simulink and PLECS [59]. A conventional system of an in-

duction generator driven by a six-switch two-level inverter with hysteresis modulation was

also implemented, in order to show the performance advantage of the proposed system. Both

systems use the same hysteresis band (i.e., h = 0.05 pu).

In the conventional system, the inverter’s DC-link voltage must satisfy Vo(inv)/
√
3 ≥ |Ṽm|max,

where |Ṽm|max corresponds to ωe,max in Figs. 2.6 and 2.8. For the machine parameters used
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Figure 2.9 Control block diagram for the induction generator driven by the
Vienna rectifier.

here, Vo(inv) can be set as 700 V. This will be the blocking voltage stress of the inverter

switches.

On the other hand, the DC-link voltage of the Vienna rectifier for Case 1 is constrained

by (2.23), where |Ṽ |max is obtained by Fig. 2.6. Herein, Vo = 1, 400 V for Case 1, even though

a slightly lower voltage could have been chosen (as low as 1, 127 V). This will impose the same

blocking voltage stress as the inverter’s switches on the switches of the Vienna rectifier. For

Case 2, however, Vo can be set as low as 700 V according to (2.26) and Fig. 2.8. Therefore,

the blocking voltage stress of the switches for Case 2 is decreased to 350 V.

Based on the voltage and current requirements, the POWEREX CM400HA-24A (400 A/

1200 V) single IGBTmodule [60] can be used to construct the inverter, and both CM400HA-24A

and the POWEREX QRS1240T30 (180 A/1200 V) fast recovery diode module [61] can be used

to set up the Vienna rectifier. Note that the free-wheeling diode in the IGBT module does

not conduct current in the Vienna rectifier. Since PLECS supports the thermal modeling and

simulation of semiconductors, the switching and conduction loss can be obtained as long as the

thermal description parameters of switches and diodes are specified in the PLECS circuits [59].
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Figure 2.10 Loss comparison between inverter and Vienna rectifier in
Case 1.

The thermal description parameters of POWEREX CM400HA-24A and QRS1240T30, such

as on-state voltage, turn-on and turn-off losses, can be acquired from the component data

sheets [61,62] and the Power Module Loss Simulator [63].

The switching loss Psw, conduction loss Pcon, and total loss Psum = Psw + Pcon of the

IGBT modules in one phase leg of the inverter are presented in Figs. 2.10 and 2.11. These are

compared to Psw, Pcon, and Psum of the IGBT module and the diode modules in one phase

leg of the Vienna rectifier. (The wind speeds of 5.87 m/s and 7.25 m/s correspond to ωe1

and ωe2.) Figures 2.10 and 2.11 show that Psw and Pcon of IGBTs and diodes in the Vienna

rectifier rise with the increase of wind speed. The IGBTs dominate the switching loss, whereas

the diodes dominate the conduction loss. Since the blocking voltage stress of IGBTs and
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Case 2.
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Figure 2.12 Machine currents and torque comparison (vw = 10 m/s).

diodes in Case 2 is half of that in Case 1, the switching loss in Case 2 decreases remarkably

compared with Case 1. The amount of decrease of conduction loss is apparent in the high

wind speed range because the current through the IGBTs and diodes in Case 2 is lower than

that in Case 1 (refer to |Ĩ| in Figs. 2.6 and 2.8). The total loss of Case 1 is greater than that

of the inverter in the high wind speed range due to high conduction loss of diodes. Case 2

has lower total loss because of the significant decrease of switching and conduction loss. Note

that the decrease of IGBT switching and conduction loss in the Vienna rectifier, especially

for Case 2, can reduce the thermal stress of the IGBTs and further improve the reliability of

the IGBT modules [64,65]. Moreover, for this wind energy conversion application, the Vienna

rectifier would be overall more efficient, because of the inherent probabilistic distribution of

wind speeds (that is, operation at rated power does not occur as often as operation at reduced

power levels).

Herein, since the above loss comparison is used to demonstrate the characteristics and

performance advantage of the Vienna rectifier, the loss of the LC filter is not considered. On

the other hand, because of the LC filter, the current through the machine in the proposed
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system has much lower harmonic content than in a conventional system. This helps reduce

generator losses and torque pulsation (Fig. 2.12).

2.6 Conclusions

A novel variable-speed WECS utilizing a squirrel-cage induction machine and a Vienna

rectifier has been proposed. A capacitor bank is necessary to make the voltage and current at

the AC side of the Vienna rectifier satisfy an angle constraint. The influence of the choice of

capacitance on the operational behavior of the machine and the rating of power semiconductor

switches has been investigated. The switching and conduction loss of the power semiconductors

in the Vienna rectifier were characterized by simulations. These preliminary results show that

the proposed system has potential to be more efficient and reliable compared to a conventional

system.

There are still numerous issues that need to be investigated in more detail, such as: the

experimental verification, the effect of the Vienna rectifier upon the machine performance;

control strategies and optimal modulation methods to improve system dynamics; the buildup

of the capacitor voltage during the start-up process; ways to increase the operational speed

range by fine-tuning the electric machine design; and the interface with the power grid.
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CHAPTER 3. ANALYSIS OF SQUIRREL-CAGE INDUCTION

GENERATOR WITH VIENNA RECTIFIER FOR WIND ENERGY

CONVERSION SYSTEM

A paper published in the IEEE Transactions on Energy Conversion, Vol. 26, No. 3, pp.

967-975, Sep. 2011.

Hao Chen1 and Dionysios C. Aliprantis

3.1 Abstract

This paper analyzes a topology consisting of a squirrel-cage induction machine and a Vienna

rectifier for a wind energy conversion system. Simulation results reveal that this configuration

is advantageous with respect to energy efficiency compared to a traditional six-switch two-

level converter. In addition, it can have higher reliability, due to reduced blocking voltage

stress across the semiconductors. The theoretical analysis and feasibility of the proposed

configuration are validated by experimental results obtained from a prototype system.

3.2 Introduction

Variable-speed wind energy conversion systems (WECS) are commonly used because they

allow maximum energy extraction from the wind. Configurations using various machine types,

such as squirrel-cage induction generators, doubly-fed induction generators (DFIG), and per-

manent magnet synchronous generators (PMSG) have been studied extensively in the past and

are still subject of active research [4, 5, 49,50,66]. Even though today’s commercial MW-scale

wind turbines are mostly DFIG- or PMSG-based, there are cases where squirrel-cage induction

1Primary researcher and author
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generators are a good solution, such as in isolated power systems [67]. The squirrel-cage ma-

chine is a relatively inexpensive motor, it is quite robust, and requires minimum maintenance.

In addition, recently there has been a shortage in the supply (and a significant increase in the

demand) of rare earth minerals that are used in PMSG machines, which is expected to drive

their prices upwards. Hence, generators that are not permanent-magnet based (such as the

squirrel-cage machine) are gaining renewed interest.

For the turbine’s power electronics interface with the power system, back-to-back six-switch

two-level PWM converters are used in the majority of cases [6]. Multi-level converters, such as

the back-to-back three-level neutral-point-clamped converter, have been proposed as well [7,8].

The utilization of multi-level converters can lead to designs with higher power ratings and

improved power quality. However, the large number of power switches significantly increases

cost and control complexity [9].

The three-phase/three-switch/three-level PWM rectifier [10] (called the “Vienna” rectifier),

has been applied mostly as a power supply module and as an active front-end stage in motor

drives [11]. The Vienna rectifier can generate three voltage levels with decreased number of

power switches (only three) thus simplifying the control and reducing cost (although more

diodes are needed). Also, it leads to reduced blocking voltage stress on the power semiconduc-

tors, which can enhance reliability.

In this paper, a novel WECS topology with a squirrel-cage induction generator and a

Vienna rectifier is proposed, and its operation is analyzed in detail.2 This topology was first

introduced in [68], and could be used in wind turbines of practically any rating. Herein, the

analysis of [68] is extended to the case of an induction generator with main flux path saturation

(Section 3.3). A case study is devised to demonstrate the operation of the system under a wide

speed range (Section 3.3.3). The proposed configuration is compared to the conventional six-

switch two-level converter system by way of simulations (Section 3.4), which show that the

Vienna rectifier topology has better efficiency, and the potential for better reliability. Finally,

experimental results on a prototype generator drive are provided that validate the operation

2The design of the maximum power point tracking and blade pitching control loops is not discussed in this
paper, which focuses entirely on the analysis of the electromechanical energy conversion system.
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of the system (Section 4.5). It should be noted that a Vienna rectifier/PMSG configuration

was recently proposed and studied (using simulation results only) in [69]. Our results are

in agreement with the conclusions of [69], namely, that the Vienna rectifier provides a more

efficient power electronics topology than the classical two-level PWM converter. The proposed

induction generator/Vienna rectifier topology constitutes a new promising design option, which

should be evaluated closely by the wind energy industry.

3.3 Steady-State Analysis

In the analysis that follows, it is assumed that the wind turbine is operating under maximum

power point tracking control, in a hypothetical quasi-steady-state mode of operation. Also,

the induction generator is controlled using the rotor field-oriented control scheme. Equations

are derived that relate all of the machine’s steady-state variables to rotor speed, which is

proportional to the prevailing wind speed. This enables the study of the system’s performance

as a function of wind speed (a single degree of freedom). Of particular interest is the generator’s

input impedance.

The proposed configuration is shown in Fig. 3.1. The use of an LC filter is dictated by a

constraint imposed by the Vienna rectifier. Moreover, the capacitor bank is necessary for the

self-excitation of the induction machine. The capacitors cannot be charged from the energy

stored in the dc link using the Vienna rectifier, because this is a unidirectional converter. The

self-excitation of an induction machine is a well known phenomenon, so it will not be explained

further in this paper. For the purposes of this analysis, self-excitation is predicted analytically

using the method of [70].

The topology of the three-phase/three-switch/three-level PWM (“Vienna”) rectifier is de-

picted in Fig. 4.1. Herein, we consider the electromechanical system until the dc bus, which

is assumed to maintain a constant dc voltage. The dc bus can be connected to a conventional

six-switch or other type of inverter. Alternatively, it could be connected to a dc collection

system, such as the ones that have been proposed to establish dc grids in offshore wind farms

with HVDC transmission [20,51,52].
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3.3.1 Wind Turbine and Induction Generator

The mechanical power Pm extracted from the wind by a turbine can be expressed as [48]:

Pm = 1
2ρπR

2
wcp (λ, γ) v

3
w , (3.1)

where vw is the upstream wind speed, ρ is the air density, Rw is the rotor disc radius, cp (λ, γ)

is the performance coefficient, γ is the pitch angle in degrees, and λ is the tip-speed ratio given

by λ = ωwRw/vw, where ωw denotes the blades’ angular velocity. In this analysis, pitching

of the blades is not considered, so γ = 0, and cp(λ, 0) attains its maximum value cmax
p for

an optimal λo. In a variable-speed wind turbine, the blades’ speed is changed proportionally

to the wind speed such that λo is always maintained, in order to extract maximum power

from the wind. The relation between λo and the optimal wind turbine rotor speed ωwo or the
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corresponding generator electrical speed ωro is given by

λo =
ωwoRw

vw
=

ωro

vw
K1 , (3.2)

where K1 = (2Rw)/(GP ), G is the gearbox ratio, and P is the number of generator poles.

Using (3.2) to express vw in terms of ωro and λo, (4.1) becomes

Pmax
m = K2c

max
p

(

ωro

λo
K1

)3

, (3.3)

where K2 =
1
2ρπR

2
w. Therefore, the mechanical torque applied to the generator shaft for

maximum power extraction (ignoring gearbox losses) is a quadratic speed function:

Tmax
m =

P

2

Pmax
m

ωro
=

P

2
Mω2

ro , (3.4)

where M = K2K
3
1c

max
p /λ3

o.

The rotor field-oriented control [53] is adopted for the induction generator, and generator

convention is used for the currents. The analysis uses standard notation for the machine pa-

rameters. The steady-state machine stator and rotor currents are expressed in the synchronous

reference frame, hence the ‘e’ superscript. The d-axis stator current Ieds is

Ieds = − Λ′
r

Lm
, (3.5)

where Λ′
r is the machine’s rated rotor flux, and Lm = Lm(Im) is a nonlinear magnetizing

inductance. The qd-axes rotor currents are

I ′eqr = −Lm

L′
r

Ieqs and I ′edr = 0 . (3.6)

The electromagnetic torque is

Te =
3

2

P

2

Lm

L′
r

Λ′
rI

e
qs . (3.7)

Since Te is equal to Tmax
m given by (3.4) at the steady state (friction and windage losses are

ignored), the q-axis stator current Ieqs can be expressed as

Ieqs =
2L′

rM

3LmΛ′
r

ω2
ro . (3.8)
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The qd-axes magnetizing currents are given by

Ieqm = −
(

Ieqs + I ′eqr
)

= − 2L′
lrM

3LmΛ′
r

ω2
ro , (3.9)

Iedm = −
(

Ieds + I ′edr
)

=
Λ′
r

Lm
. (3.10)

The magnetizing flux is

Λm = LmIm , (3.11)

where Im is the magnetizing current given by

Im =

√

(

Ieqm
)2

+
(

Iedm
)2

. (3.12)

Substitution of (3.9) and (3.10) into (3.11) and (3.12) yields

Λm =

√

(

2L′
lrM

3Λ′
r

ω2
ro

)2

+ Λ′
r
2 , (3.13)

which signifies that Λm is a function of ωro, which in turn is proportional to wind speed.

The term that is inside the parentheses remains quite small, so that Λm ≈ Λ′
r for the entire

operational speed range (so the machine is not overly saturated for high speeds). An arctangent

function representation is adopted to represent the relationship between Λm and Im [71], which

can be used to obtain Im. Then, Lm can be calculated from Lm = Λm/Im. After obtaining

Lm, the machine currents can be calculated from (3.5), (3.6), and (3.8). Also, the qd-axes

stator fluxes (Λe
qs and Λe

ds) can be obtained. The synchronous frequency ωe is

ωe = ωro + ωs , (3.14)

where ωs is the slip frequency, which, for the rotor field-oriented control, is given by

ωs =
R′

rI
e
qs

L′
rI

e
ds

= −2R′
rM

3Λ′
r
2 ω2

ro . (3.15)

The qd-axes stator voltages can be calculated using

V e
qs = −RsI

e
qs + ωeΛ

e
ds , (3.16)

V e
ds = −RsI

e
ds − ωeΛ

e
qs . (3.17)
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Figure 3.3 Machine input impedance angle (for rotor field-oriented con-
trol).

Finally, the input impedance of the induction machine is

Z = R+ jX =
Ṽs

−Ĩs
, (3.18)

where Ṽs and Ĩs are the machine’s terminal voltage and current phasors given by

Ṽs =
V e
qs − jV e

ds√
2

and Ĩs =
Ieqs − jIeds√

2
. (3.19)

Note that R < 0 for generator action, and X > 0; hence, the power factor angle α =

tan−1(X/R) is between 90◦ and 180◦. Since −Ĩs lags Ṽs by α, it follows that Ĩs leads Ṽs

by 180◦−α. Figure 3.3 shows the variation of this angle as a function of ωro in per unit, where

1 p.u. corresponds to rated machine frequency (50 Hz in this example). This plot, as well as

several other plots in this paper, end a little before 1 p.u., because this is where rated power

output (300 kW) is obtained. The parameters of the machine and wind turbine are provided

in Appendix B.1. The significance of this calculation will be explained in the next section.

3.3.2 Vienna Rectifier

In [68], it was shown that the Vienna rectifier allows the input current (Ĩ in Fig. 3.1) to

lead or lag the input voltage (Ṽ in Fig. 3.1) by no more than 30◦. The phase shift between Ṽ

and Ĩ is denoted by β (β > 0 when current is lagging).
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From Fig. 3.3, it can be seen that a Vienna rectifier cannot be connected directly with an

induction generator because of its 30◦ angle constraint. (This plot was obtained for a given

set of machine parameters, but it is representative of induction generators in general.) In

other words, the Vienna rectifier cannot supply enough reactive power to the machine. One

possible way to provide reactive power is by connecting a capacitor bank across the machine

terminals, as shown in Fig. 3.1. The connection of an appropriately sized capacitor bank can

guarantee that the angle constraint is satisfied for a relatively wide speed range [68]. However,

a single capacitance level would not allow the operation of the system for a wind speed range

that would be typical of modern variable-speed WECS. A method to overcome this limitation,

using a switched capacitor bank, is described next.

3.3.3 System Design

Figure 3.4 shows that the choice of the LC-filter capacitance determines the operational

range of the generator [68], for a given inductance value. Apparently, any single capacitance

level restricts the speed range quite significantly. To overcome this limitation, and to enable

variable-speed operation over a typical range of wind speeds, the use of a switched capacitor

bank is proposed. The example that is illustrated in Fig. 3.4 shows a case where five capacitance

levels are selected, allowing the turbine to operate from 3 m/s to 10.5 m/s, where rated

power is obtained. (For wind speeds higher than 10.5 m/s, pitching of the blades would

be required.) The capacitor bank is switched when the operating point comes close to the

β = ±30◦ constraint. A 2◦ safety margin is introduced, so that the switching occurs at

β = ±28◦. The capacitance level that is used for the highest range of rotor speeds and output

powers is selected such that β = 0◦ at rated power, as shown in Fig. 3.7. This ensures the

best usage of the available dc-link voltage [68]. Details of the switched capacitor bank design

are shown in Table 3.1, which lists the characteristics of the five delta-connected capacitor

banks [72]. (As rotor speed increases, capacitor banks are gradually disconnected.) Note that

the capacitors do not all need to have the same voltage rating, as is indicated in the Table. As

rotor speed increases, so does the capacitor bank voltage; this is shown in Fig. 3.5, which also
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Figure 3.4 Capacitance constraint curves and switched capacitor bank lev-
els. (Capacitance values are for a delta-connected bank. The
LC-filter inductance is 0.25 mH per phase.)

Table 3.1 Capacitor Bank Design Parameters

C (mF) max. speed (p.u.) volt. rating (V l-l) volume (m3)

0.5 0.29 122 0.005

1.9 0.33 140 0.017

2.0 0.40 170 0.018

2.0 0.57 240 0.018

1.3 1.0 417 0.035

includes the machine terminal current variation. Base voltage and current values correspond

to the generator’s rated quantities (see Appendix B.1).

Figure 3.6 depicts voltage and current at the Vienna rectifier terminals. It is interesting to

note that the current flowing through the Vienna rectifier is lower than the machine current

for the entire speed range (because the capacitors provide a significant component of reactive

current). This will impact the conduction loss in the power electronics.

The heavy dashed line in Fig. 3.4 reflects the minimum capacitance required for self-

excitation for a range of speeds [70]. Since this curve is below the β = −30◦ constraint curve,

the machine will self-excite from a low speed. Once the voltage at the machine terminals is

established, then the Vienna rectifier can be safely engaged.
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Ṽ

s
|
[p

.u
.]

ωro [p.u.]
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Figure 3.5 Variation of voltage and current at the generator terminals.

Finally, to complete the system design, one needs to determine the necessary dc-link voltage

level of the Vienna rectifier. From [68], the dc-link voltage level must satisfy the following

constraint:

Vo ≥ 2
√
6 cos(60◦ − |β|)|Ṽ | . (3.20)

This is plotted in Fig. 3.8, which reveals that the maximum voltage occurs at ωro = 0.57 p.u.

3.4 Power Electronics Energy Loss Analysis

To evaluate the energy loss of the power electronics, the proposed topology is compared

to a conventional system of an induction generator driven by a six-switch two-level converter

(without an LC filter, which is not typically used in this case). The simulations are run using

Matlab/Simulink and PLECS [59]. To obtain a fair comparison, the two systems are designed

with similar components. For the six-switch converter in the conventional system, the space

vector modulation is used to control the machine’s terminal voltage, with a switching frequency

of 3 kHz. For the Vienna rectifier, the delta-hysteresis modulation [53] is used to control the

currents (see Fig. 3.11). The hysteresis band width is set to h = 0.02 pu, and the sampling

frequency is 20 kHz. The average switching frequency throughout the entire operating range

is on the order of 2–5 kHz, as shown in Fig. 3.9. The dc-link voltage for both systems is set

to 700 V. For the Vienna rectifier, this choice is mandated by (3.20), with a safety margin



www.manaraa.com

35

0.2 0.4 0.6 0.8 1

0

0.4

0.8

1.2

|
Ṽ
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Figure 3.6 Variation of voltage and current at the Vienna rectifier termi-
nals.

of approximately 20%. This voltage level is also sufficient for the classical six-switch inverter,

which needs to supply the machine voltage profile shown in Fig. 3.5.

Based on the voltage and current requirements, the POWEREX CM800HA-34H (800 A/1700 V)

single IGBT module [60] can be used to construct the six-switch converter. For the Vienna

rectifier (see Fig. 4.1), the CM800HA-34H is selected for the power switches SA, SB, and SC .

Note that the free-wheeling diode in the IGBT module does not conduct current. The POW-

EREX QRS0680T30 (800 A/600 V) fast-recovery diode module [73] is selected for diodes Dk

(k = 1, ..., 6), whereas the POWEREX PS410625 (2500 A/600 V) slow-recovery diode mod-

ule [74] is selected for diodes DAi, DBi, and DCi (i = 1, ..., 4) [10]. PLECS supports the

thermal modeling and simulation of semiconductors, so the switching and conduction loss can

be obtained if the thermal description parameters of switches and diodes are specified in the

PLECS circuits [59]. The thermal description parameters of the POWEREX components, such

as on-state voltage, and turn-on and turn-off losses, can be acquired from the component data

sheets and the Mitsubishi Electric Power Module Loss Simulator [63].

The switching loss Psw, conduction loss Pcon, and total loss Psum = Psw + Pcon of the

six-switch converter and the Vienna rectifier (in per unit) are presented in Fig. 3.10. For

the Vienna rectifier, the IGBTs dominate the switching loss, whereas the diodes dominate

the conduction loss. The blocking voltage stress of the Vienna rectifier IGBTs and diodes is
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only half of the voltage stress in the six-switch converter. This leads to significantly reduced

switching loss [75], as can be observed from the topmost plot (where the gray bars are almost

imperceptible). However, due to the larger number of diodes used in the Vienna rectifier, the

conduction loss is substantial, as can be seen in the middle plot. Overall, the Vienna rectifier

has lower loss for the entire speed range, as is apparent from the bottom plot. It should be

noted that the decrease of IGBT switching and conduction loss in the Vienna rectifier can

reduce the thermal stress of the IGBTs, and thus further improve the reliability of the IGBT

modules [64,65].
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It is possible to estimate the annual energy loss of the power electronics by taking into

account the statistics of wind speed. Usually, the Weibull probability density function is used

to describe the variation of wind speed over a year [76]. The Weibull distribution is defined

using two parameters, namely, a scale parameter c, and a shape parameter k. For this analysis,

the parameters are k = 2 and c = 7.2 m/s. The annual energy loss can be estimated by

Eloss =

∫ vmax

vmin

8760Ploss(vw)f(vw)dvw , (3.21)

where vmin and vmax are wind speed limits, Ploss is the converter power loss, and f is the

Weibull distribution. The integral in (4.18) is evaluated numerically, using the trapezoidal rule

and the discrete points that were obtained previously. The wind speed varies from 3 m/s to

15 m/s, and blade pitching is assumed to occur above the rated wind speed of 10.5 m/s. (For

wind speeds higher than rated, the generator and power electronics operate at the same point

as for 10.5 m/s.)

The annual energy losses of the Vienna rectifier and six-switch converter are given in

Table 4.1, in absolute numbers and as a percentage of the total generated energy. The results

suggest that, for this example, the Vienna rectifier is a slightly more efficient solution. This

conclusion cannot be generalized to all possible cases, because the answer depends on a large

number of case-specific parameters. A more thorough comparison is worthwhile, and is left for
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Table 3.2 Energy Loss Comparison

loss (MWh) loss (%)

6-switch converter 27.72 3.44%

Vienna rectifier 18.82 2.33%

future work. In addition, the loss of the LC filter has not been taken into account. However,

the LC filter does absorb a substantial amount of harmonics, which would otherwise flow in the

generator windings. Therefore, there occurs a shift of harmonic power loss from the generator

to the LC filter, which is difficult to quantify (because it will affect both ohmic and core

losses), and should also be more carefully investigated. The reduction of harmonic currents

in the generator also helps reduce the high-frequency electromagnetic torque pulsation, which

could be an additional factor of drivetrain fatigue in a WECS.
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3.5 Experimental Results

To verify the feasibility of the proposed topology, a small-scale prototype has been im-

plemented in the laboratory. A separately excited dc machine was used as a prime mover.

The parameters of the experimental setup are provided in Appendix B.2. A programmable

dc power source was used to supply the dc-link voltage of the Vienna rectifier (Vo = 400 V).

Resistors were connected in parallel with the dc-link capacitors, to absorb the generated power.

The control scheme shown in Fig. 3.11 was implemented on a dSPACE DS1103 system.

It is important to note that this experimental topology does not emulate the torque-speed

characteristics of a WECS. Therefore, the results obtained in this section should not be

compared with the theoretical curves of Section 3.3. The dc machine armature and field

winding voltage were 96.5 V and 129 V, respectively. The torque-speed characteristic of this

configuration is linear, and the speed control loop of Fig. 3.11 was deactivated.
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3.5.1 Steady-State

In this experiment, the rotor magnetizing current reference, i∗mr, was set to −1.1 A (minus

sign because of generator convention for currents), and the q-axis stator current reference, ie∗qs,

was consecutively set to 0.45 A, 0.5 A, 0.55 A, 0.6 A, and 0.65 A. For each value of ie∗qs, the

power factor at the ac side of the Vienna rectifier was acquired using a power analyzer, from

which β was obtained; the experimental results are shown as stars in Fig. 3.12, and the the-

oretically predicted variation is superimposed as a solid line. The experimental results match

the theoretical analysis quite well. During the experiments, when ie∗qs was further increased

towards 0.7 A or decreased towards 0.4 A, the rotor speed became unstable and the Vienna

rectifier was unable to drive the induction generator, because the ±30◦ angle constraint was

violated.

Figure 3.13 shows the generator’s phase-a current ia, the generator’s line-to-line voltage

vab, the Vienna rectifier’s phase-A current iA, and the Vienna rectifier’s line-to-line voltage

vAB , for i
e∗
qs = 0.5 A. It can be seen that the voltage across the generator’s terminals is almost

free of harmonics due to the presence of the LC filter.
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Figure 3.13 Steady state waveforms: ie∗qs = 0.5 A and i∗mr = −1.1 A.

3.5.2 Transient Behavior

In this experiment, the operation of the controller is validated with a transient study. The

magnetizing current command i∗mr was set to −1.1 A and ie∗qs was stepped from 0.65 A to

0.45 A at t ≈ 0.7 s. Figure 5.14 depicts the transient response. Shown are the stator currents

in the synchronous reference frame, ieqs, i
e
ds, the LC-filter current commands, ie∗q , ie∗d , and the

rotor speed, ωr. The rotor speed increased since the electromagnetic torque of the generator

was decreased.

3.6 Conclusions

A novel variable-speed WECS consisting of a squirrel-cage induction generator and a Vienna

rectifier has been proposed and analyzed. An LC filter based on a switched capacitor bank

is utilized to obtain a wide speed operational range. The switching and conduction losses of

the power semiconductors in the Vienna rectifier were obtained by simulations, and compared

to the losses incurred by a similar six-switch converter. The results show that the proposed

system has potential to be more efficient and reliable. Finally, the proposed topology and

control algorithm were experimentally validated on a small-scale prototype.

This appears to be a promising topology that should be investigated in more depth. Im-
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portant questions that remain unanswered are related to the economic considerations of this

topology versus a more classical one; the effect of the Vienna rectifier on the machine perfor-

mance, including an accurate determination of harmonics-related losses on the machine and

the LC filter; a detailed system-level energy loss comparison that includes all components;

the quantification of the possible reliability enhancement due to the reduced voltage stress

on the switches; alternate control strategies and optimal modulation schemes; increasing the

operational speed range and/or reducing capacitive requirements by fine-tuning the electric

machine design and its parameters; the impact of the capacitor switching transients on the

electric generator; and a study of the benefits of eliminating high-frequency torque vibrations

from the wind turbine drivetrain.
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CHAPTER 4. ANALYSIS OF PERMANENT-MAGNET

SYNCHRONOUS GENERATOR WITH VIENNA RECTIFIER FOR

WIND ENERGY CONVERSION SYSTEM

A paper accepted by the IEEE Transactions on Sustainable Energy

Hao Chen1, Nicholas David, and Dionysios C. Aliprantis

4.1 Abstract

This paper analyzes a topology consisting of a permanent-magnet synchronous generator

and a Vienna rectifier for a wind energy conversion system. A control strategy leading to

maximum efficiency is proposed. Simulation results reveal that this configuration is advanta-

geous with respect to energy efficiency compared to a traditional six-switch two-level converter.

Experimental results are provided to demonstrate the feasibility of the proposed system.

4.2 Introduction

Variable-speed wind energy conversion systems (WECS) are widely used since they allow

maximum power extraction from the wind. Configurations using various machine types, such

as squirrel-cage induction generators (SCIG), doubly-fed induction generators, and permanent

magnet synchronous generators (PMSG) have been studied extensively in the past and are

still subject of active research [50,67,77–79]. Among different types of variable-speed WECS,

PMSG-based turbines are attractive because of higher power capacities and energy efficiency,

and good grid support capability [80–82].

1Primary researcher and author
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Figure 4.1 Power circuit of a Vienna rectifier.

Usually, PMSG-based WECS use back-to-back full-scale power converters (generator-side

and grid-side converter) to interface with the power system. For the generator-side converter,

uncontrolled three-phase diode rectifiers and six-switch two-level PWM converters have been

utilized [32, 83]. However, due to higher generator current distortion induced by the diode

rectifier, the six-switch converter is the prevailing choice [6].

The three-phase/three-switch/three-level PWM rectifier (commonly called the “Vienna”

rectifier), whose power circuit is shown in Fig. 4.1, has been applied mostly as a power supply

module and as an active front-end stage in motor drives [10, 11]. The Vienna rectifier can

generate three voltage levels (line to dc-link neutral) with only three power switches, thus

simplifying the control, reducing cost (although more diodes are needed), and improving power

quality. In addition, it results in reduced blocking voltage stress on the power semiconductors,

which can enhance reliability.

Recently, the Vienna rectifier has been proposed as the generator-side converter for ei-

ther SCIG- or PMSG-based WECS [69, 84, 85]. In particular, Rajaei et al. in [69] propose a

PMSG/Vienna rectifier configuration for a WECS, as shown in Fig. 4.2. The Vienna rectifier

is used as the generator-side converter, which is commonly a six-switch two-level converter.

Because the Vienna rectifier is a unidirectional converter, it cannot be used as a grid-side

interface. Rather, a conventional six-switch converter or a multi-level converter can be used.

In [69], time-domain simulation results that demonstrate the system’s functionality are
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provided; however, a mathematically rigorous analysis of the system has not been performed.

The primary objective of this paper is to fill this gap, i.e., to determine the feasible operating

region of the PMSG/Vienna configuration, which is studied in detail in Section 5.4.1.2 The

paper’s second objective is to design a maximum-efficiency control strategy within the feasible

operating region, which is discussed in Section 4.4. Experimental results on a small-scale

prototype are provided in Section IV. Section 4.6 concludes the paper. Our results are in

agreement with the conclusions of [69, 86–88], namely, that the Vienna rectifier provides a

more efficient power electronics topology than the classical two-level PWM converter. Hence,

the PMSG/Vienna rectifier topology constitutes a new promising design option, which should

be evaluated closely by the wind energy industry.

4.3 Determination of Feasible Operating Region

In this section, the PMSG/Vienna configuration is analyzed in the steady state. The

objective is to illustrate how the system’s operation is constrained by current and voltage

2The design of the blade pitching control loops is not discussed in this paper, which focuses on the analysis
of the electromechanical energy conversion system.
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limits. Here, it is implied that a grid-side converter is in place. However, this is not considered

in the ensuing analysis, because it does not affect the steady-state operation (a dc-link with

sufficiently large capacitance essentially decouples the two converters). Nevertheless, it would

be necessary to consider both converters in dynamic simulation studies that involve grid-side

faults.

First, consider the well-known expression of mechanical power extracted from the wind by

a horizontal-axis wind turbine [48]

Pm(vw) =
1

2
ρAcp (λ, γ) v

3
w , (4.1)

where vw is the upstream wind speed, ρ denotes the air’s density, A is the area swept by the

blades, cp (λ, γ) is the performance coefficient, γ is the blades’ pitch angle, and λ is the tip-

speed ratio. Typically, for a variable-speed wind turbine operating between its cut-in and rated

speeds, the blades are not pitched (γ = 0), and the rotational velocity is changed proportionally

to the wind speed in order to extract maximum power from the wind. In this operating mode,

the electromagnetic torque command can be a quadratic speed function [85,89]:

T ∗
e (ωr) = Cω2

r , (4.2)

where C is a constant, and ωr is the (measured) electrical rotor speed. (This control strategy

ensures stable operation around the optimal power-speed curve, even during transient aero-

dynamic conditions.) For wind speeds higher than the rated speed, the pitch angle of the

blades is controlled in order to maintain constant (rated) power output. However, as far as the

generator is concerned, if the oscillations around the rated operating point are ignored, its op-

erating condition remains essentially the same. In the ensuing analysis, mechanical dynamics

are ignored, and the electrical generation subsystem is assumed to remain in a steady state. In

MW-scale wind turbines, due to their relatively large rotor inertia and the slow time constants

of the pitch angle dynamics compared to the electrical generator subsystem, this assumption

leads to negligible error.

The steady-state model of a PMSG consists of the following voltage equations in the rotor’s

reference frame, using generator convention for the stator currents and standard symbols for



www.manaraa.com

47

electrical parameters [53]:

V r
qs = −RsI

r
qs + ωr (−LdI

r
ds + λm) , (4.3)

V r
ds = −RsI

r
ds + ωrLqI

r
qs . (4.4)

The electromagnetic torque Te (positive for generator action and ωr > 0) is

Te =
3

2
p
[

(Lq − Ld) I
r
qsI

r
ds + λmIrqs

]

, (4.5)

where p is the number of the generator’s magnetic pole pairs. The generator’s qd-axes currents,

Irds and Irqs, are controlled to obtain the appropriate torque, Te = T ∗
e (ωr). The parameter values

used to generate the results herein are provided in Appendix C.1.

Current and voltage limits (of fundamental components, neglecting higher-order harmonics)

can be expressed by

(

Irqs
)2

+ (Irds)
2 ≤ (Ismax)

2 , (4.6)

(

V r
qs

)2
+ (V r

ds)
2 ≤ (Vsmax)

2 , (4.7)

where Ismax is the maximum stator current (in terms of peak value) and Vsmax is the max-

imum stator voltage (line-to-neutral, peak value) that the stator-side converter can generate

depending on the dc-link voltage Vo. The current limit (4.6) represents a fixed circle on the

Irds–I
r
qs plane. The voltage limit (4.7), in general, is represented by a speed-dependent curve

on the plane.

Before proceeding to the analysis of the PMSG/Vienna rectifier configuration, it is instruc-

tive to analyze the PMSG connected to a conventional six-switch two-level converter. The

voltage limit for a non-overmodulated converter is Vsmax = Vo/
√
3. Combining (4.3), (4.4),

and (4.7) leads to an ellipse that is (approximately, after neglecting stator resistance) defined

by
(

Irds − λm

Ld

)2

(

1
Ld

)2 +

(

Irqs
)2

(

1
Lq

)2 =

(

Vsmax

ωr

)2

. (4.8)
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Two voltage limit ellipses for ωr1 = 0.8 p.u. and ωr2 = 1 p.u. are shown in Fig. 4.3.3

The two corresponding equal-torque contours, Te1 = T ∗
e (ωr1) and Te2 = T ∗

e (ωr2), are also

shown. The required level of torque can be obtained by selecting any (Irds, I
r
qs) pair along

an equal-torque contour. It can be seen that for relatively low torque (i.e., low wind and

rotor speeds), the voltage limit ellipse encloses the current limit circle, so the possible qd-axes

currents are constrained by the current limit circle only; these limits are marked as Points A

and B. However, with increasing torque (i.e., higher wind speeds), the voltage limit ellipse

shrinks, and after a point the currents along an equal-torque contour will be constrained by

both the voltage limit ellipse and the current limit circle; these are marked as Points C and D

for ωr2. The coordinates of the intersection points A, B, C, D can be determined either by

solving a set of equations (if possible, e.g., when finding the intersection of the current limit

circle with the torque hyperbola) or numerically, if the equations are intractable. It is then

straightforward, by repeating this process, to draw a feasible “current selection region” diagram

for the entire torque range, such as the one depicted by area (EFGHI) in Fig. 4.4. This diagram

can be interpreted as follows: for each T ∗
e (ωr), the intersections of the equal-torque contour and

the perimeter of the current selection region provide the outer limits for the currents (Irds, I
r
qs).

If a Vienna rectifier is used instead of a six-switch converter, the current phasor (Ĩs = Is∠− φ

in Fig. 4.2) cannot lead or lag the line-to-neutral voltage phasor (Ṽs = Vs∠0 in Fig. 4.2) by

more than 30◦ [85]. Therefore, it is necessary to examine the impact of this constraint on the

operating range of the PMSG-Vienna configuration. To this end, the power factor is calculated

based on the active and reactive powers generated from the stator, which are

Ps =
3

2

(

V r
qsI

r
qs + V r

dsI
r
ds

)

, (4.9)

Qs =
3

2

(

V r
qsI

r
ds − V r

dsI
r
qs

)

. (4.10)

For generator operation, Ps > 0, whereas Qs can be positive, zero, or negative. Ignoring the

3To generate this and subsequent plots, a nonzero Rs has been considered in the voltage limit calculation
for higher accuracy; this rotates slightly the non-resistive voltage limit ellipses, but their shape is still elliptical.
Also, a 200-V safety margin is taken into account (i.e., the dc-link voltage is assumed to be reduced by this
amount).
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stator resistance Rs, substitution of (4.3) and (4.4) into (5.10) and (5.13) yields

Ps =
3

2
ωr

[

(Lq − Ld) I
r
qsI

r
ds + λmIrqs

]

, (4.11)

Qs =
3

2
ωr

[

−Lq

(

Irqs
)2 − Ld (I

r
ds)

2 + λmIrds

]

. (4.12)

The tangent of the power factor angle is

tan φ =
Qs

Ps
=

−Lq

(

Irqs
)2 − Ld (I

r
ds)

2 + λmIrds
(Lq − Ld) IrqsI

r
ds + λmIrqs

. (4.13)

This leads to

Ld (I
r
ds)

2 + tan φ (Lq − Ld) I
r
dsI

r
qs + Lq

(

Irqs
)2 − λmIrds + tan φλmIrqs = 0 , (4.14)
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which represents a φ-dependent ellipse on the Irds–I
r
qs plane. Three equal-power-factor ellipses,

corresponding to φ = ±30◦ and φ = 0◦, are plotted in Fig. 4.5.4 The currents are constrained

to lie within the region enclosed by the ±30◦ curves.

An additional constraint is imposed from the maximum attainable line-to-neutral stator

voltage, whose peak value depends on the power factor by [84]:

Vsmax(φ) =
Vo

2
√
3 cos(60◦ − |φ|)

, (4.15)

where φ = φ(Irds, I
r
qs) by (4.13). In other words, combining (4.3), (4.4), (4.7), (4.13), and

(4.15), the voltage limit equation is an implicit function of the qd-axes currents, parameterized

by the rotor speed:

(

V r
qs(I

r
ds, I

r
qs;ωr)

)2
+
(

V r
ds(I

r
ds, I

r
qs;ωr)

)2 ≤
(

Vsmax(I
r
ds, I

r
qs)
)2

(4.16)

Three voltage limit contours corresponding to ωr3 = 0.4 p.u., ωr4 = 0.6 p.u., and ωr5 = 0.8 p.u.

are numerically calculated and shown in Fig. 4.6. Due to the inclusion of stator resistance in

the calculations, the curves become slightly unsymmetrical with respect to the Irqs = 0 axis.

Also, they are not elliptical, and they tend to shrink with increasing ωr.

The voltage limit curves corresponding to ωr4 and ωr5 are drawn in Fig. 4.5, together with

the two corresponding equal-torque contours, Te4 = T ∗
e (ωr4) and Te5 = T ∗

e (ωr5). It can be

4It is interesting to note that all ellipses (regardless of the value of φ) intersect the Irqs = 0 axis at the origin
and at Irds = λm/Ld. The ellipses have been generated by setting Rs = 0. A nonzero resistance value will cause
these ellipses to be speed-dependent, but their shape only changes slightly.
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seen that for relatively low torque (i.e., low wind speeds), the available qd-axes currents are

constrained by the power factor ellipses of φ = ±30◦; their limits are marked by Points J and K

for Te4. For higher torque levels, the constraints on the currents arise from the voltage limit

curve or the current limit curve. For example, the currents of the Te5 contour are constrained

by the voltage limit curve (Point L) and the current limit circle (Point M). Similar to the

six-switch converter, Fig. 4.7 outlines the generator’s current selection region (NOPQRS) for

the entire wind speed range. This region is smaller than the one obtained for the six-switch

converter. As will be explained in the next section, this more stringent operating limit does not

negatively impact the wind turbine’s capabilities. In fact, even with this limitation in place,

the Vienna rectifier outperforms the conventional converter in terms of efficiency.

4.4 System Control Strategy

The next step after the determination of the feasible operating region is the design of a

current control strategy to obtain the desired level of torque from the generator, constrained

by the current, voltage, and power factor operating limits. In this section, a current control

strategy that maximizes the system’s energy conversion efficiency is proposed. To realize this,

it is necessary to determine the qd-axes currents that lead to maximum efficiency at each

operating point. The analysis takes into account copper losses in the stator windings and

semiconductor losses in the converter. The losses are estimated using two different methods:
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(i) assuming that the current waveform is purely sinusoidal, by calculating the conduction and

switching losses of each semiconductor, and (ii) using a detailed switching-level simulation with

a commercial simulation package. The former is relatively computationally inexpensive, and

is used for scanning the entire feasible operating region, thus leading to the determination of

optimal current commands for each wind speed. The latter is used to verify the results of the

analytic calculation for the optimal points that have been previously determined.

4.4.1 Component Selection

Based on the voltage and current requirements of the 1.5-MW generator considered herein,

the ABB 5SNA 1200G450300 single IGBT module [90] (rated for a collector-emitter voltage

of 4500 V and a collector current of 1200 A) is selected for both the six-switch converter and

the Vienna rectifier. (Note that the free-wheeling diode in the IGBT module never conducts

current in the Vienna rectifier.) For the diodes of the Vienna rectifier, the ABB 5SDF 10H4502

fast-recovery diode module [91] (rated for a repetitive peak reverse voltage of 4500 V and a

maximum RMS forward current of 1270 A) is selected for diodes Dk (k = 1, ..., 6), whereas the

ABB 5SDD 11D2800 standard recovery diode module [92] (rated for a repetitive peak reverse

voltage of 2800 V and a maximum RMS forward current of 1285 A) is selected for diodes Dai,
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Dbi, and Dci (i = 1, ..., 4) [10]. For both converters, continuous space vector modulation is

used, with a switching frequency of 2 kHz.

4.4.2 Identification of Most Efficient Operating Points

The power loss calculations for the six-switch converter and the Vienna rectifier are based

on current- and voltage-dependent functions of the IGBTs’ and diodes’ on-state voltage drops

and turn-on/off switching energy losses, which can be obtained from the components’ data

sheets [75, 93]. The currents are assumed to be purely sinusoidal. The objective is to search

the entire operating region for the most efficient operating points. To achieve this, the wind

speed range is discretized, and a finite set of feasible qd-axes currents that can provide the

required torque for each wind speed is determined as per the current selection regions depicted

in Figs. 4.4 and 4.7. For each qd-axes current pair, the calculations proceed as follows:

1. The generator’s terminal voltages are calculated using (4.3) and (4.4).

2. The switching sequence and dwell time are obtained using the methods presented in [94]

and [95,96] for the six-switch converter and Vienna rectifier, respectively.

3. Each fundamental period (Tf = 2π/ωr) is discretized into a number of switching periods.

The conduction and switching energy losses over each switching period are calculated by

identifying the various topologies and switching events, and estimating the losses of each

IGBT and diode. The losses are accumulated over the entire switching period.

4. The generator’s ohmic losses are calculated.

5. The sum of converter and generator loss yields the total system loss.

Fig. 4.8(a) presents a three-dimensional plot of the calculated efficiency of the PMSG/six-

switch converter system over the entire feasible operating region. The current set-points that

lead to the highest efficiency for each operating point are marked by the black dots, which

are projected on the current plane in Fig. 4.8(b). As can be seen, all points lie within a very

narrow band around the maximum torque-per-ampere (MTPA) curve [53], which (for a PMSG
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Figure 4.8 Efficiency and optimal current selection of the
PMSG/six-switch converter system.

with saliency) can be expressed as:

(

Irqs
)2

= (Irds)
2 + Irds

λm

Lq − Ld
. (4.17)

The MTPA curve is derived based on a minimization of the stator’s ohmic loss. Herein, the

losses of the stator-side power electronics converter are also accounted for. It is interesting to

note that the MTPA curve results in the optimal efficiency of the combined generator/converter

system.

Similarly, Fig. 4.9(a) depicts the efficiency of the PMSG/Vienna rectifier system. Fig. 4.9(b)

shows that, for relatively low and medium torque, the optimal current set-points lie very close

to the MTPA curve. However, at higher torque levels, the MTPA curve extends outside the

feasible current selection region, so the optimal current set-points are located on the voltage

limit curve. Therefore, a control system designer can make use of the classical MTPA and

voltage limit curves, which are both analytically tractable, to generate the current command

look-up table.

The switching loss, Psw, conduction loss, Pc, and total semiconductor loss, Psemi = Psw +

Pc, of the six-switch converter and the Vienna rectifier over the entire wind speed range are

juxtaposed in the top three graphs of Fig. 4.10. For the Vienna rectifier, these include the

losses of the IGBTs and the diodes. For the six-switch converter, these represent the losses of
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(a) Efficiency analysis.
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Figure 4.9 Efficiency and optimal current selection of the PMSG/Vienna
rectifier system.

the IGBTs and their free-wheeling diodes. (For wind speeds higher than rated, the operating

point of the generator is assumed to remain constant.) Since the blocking voltage stress of the

Vienna rectifier IGBTs and diodes is only half of the voltage stress in the six-switch converter,

the Vienna rectifier exhibits lower switching loss. On the other hand, due to the larger number

of diodes in the Vienna rectifier, its conduction loss is higher. The bottom graph shows

the combined generator/converter power loss, Ploss. Overall, the Vienna rectifier leads to lower

power losses over the entire speed range. Remarkably, even though the Vienna rectifier deviates

from the optimal MTPA curve after a certain wind speed (ca. 8 m/s in this example), the total

power loss is always lower than the conventional six-switch converter system, as demonstrated

in Fig. 4.11. The third graph of Fig. 4.10 also includes the total (switching plus conduction)

IGBT losses for the Vienna rectifier, marked by crosses. The apparent decrease of IGBT loss

in the Vienna rectifier can reduce the thermal stress of the IGBTs, and thus further improve

the reliability of the IGBT modules [64,65].

The expected annual energy loss of the PMSG/Vienna system can be estimated by taking

into account the statistics of wind speed. Usually, the Weibull probability density function

is used to describe the variation of wind speed over a year [76]. The Weibull distribution is

defined using a scale parameter c, and a shape parameter k. Here, k = 2 and c = 8.3 m/s. As



www.manaraa.com

56

0

1

2

3

 

 
6SW-Converter Vienna

0

0.2

0.4

0.6

0

1

2

3

4 5 6 7 8 9 10
0

2

4

6

Wind speed [m/s]

P
sw

[%
]

P
c
[%

]
P
se
m
i
[%

]
P
lo
ss
[%

]

Vienna IGBT loss

Figure 4.10 Loss comparison between six-switch converter and Vienna rec-
tifier (losses expressed in per unit, with respect to the rated
generator power).

described previously, the total power loss can be computed as a function of the wind speed,

Ploss(vw). Then the expected annual energy loss, Eloss, can be found by applying the formula

for the expected value of an arbitrary function g(X) of a random variable X with respect to

a probability density function f(x), E(g(X)) =
∫∞
−∞ g(x)f(x)dx:

Eloss = 8760 · E(Ploss(vw))

= 8760

∫ voutw

vinw

Ploss(vw)f(vw)dvw , (4.18)

where vinw and voutw are the cut-in and cut-out wind speeds, and f(vw) is the Weibull probability

density function at hub height. The integral in (4.18) can be evaluated numerically, using the

trapezoidal rule and the discrete points that were obtained previously. Ideal blade pitching is
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Table 4.1 Energy Loss Comparison

Fundamental-only Simulation
Loss

MWh % MWh %

6-SW converter 299.16 4.907 299.11 4.906

Vienna rectifier 245.89 4.033 244.44 4.009

assumed to occur above the rated wind speed. The annual energy losses of the two configu-

rations are listed in Table 4.1, in absolute numbers and as a percentage of the total expected

annual mechanical input energy, calculated as follows:

Em = 8760

∫ voutw

vinw

Pm(vw)f(vw)dvw . (4.19)

For vw lower than the rated wind speed, equation (4.1) with the optimal value of the tip-speed

ratio λo and γ = 0 is used. For vw higher than the rated speed, constant rated power is used.

4.4.3 Simulation-Based Power Loss Estimation

In order to verify the results obtained using the fundamental component-based power loss

calculation method, detailed time-domain simulations of both systems have been performed

using Matlab/Simulink and the Piecewise Linear Electrical Circuit Simulation (PLECS) tool-

box [59]. PLECS supports the thermal modeling and simulation of semiconductors. The

switching and conduction losses can be obtained if the thermal description parameters of

switches and diodes are specified in the PLECS circuits [59].
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îrqs
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Figure 4.12 Control block diagram for the PMSG driven by the Vienna
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The control structure for the PMSG/Vienna rectifier is illustrated in Fig. 6.1. The torque

command T ∗
e is determined from the measured generator speed based on a predefined quadratic

function for maximum power extraction, viz. (4.2). Note that when the wind speed is higher

than its rated value, blade pitching control is activated, and the torque command is set at its

maximum value. Usually a 10% increase of the generator speed can occur due to the slow pitch

angle control dynamics [77]. The qd-axes current commands (ir∗qs and ir∗ds) are pre-calculated

using the method described in Section 4.4.2, and generated with a look-up table. For the Vienna

rectifier, the simplified space vector modulation method based on the equivalence between two-

level and three-level converters is applied [96]. Specifically, the 3-phase currents (̂iabc) are used

to identify the active voltage vectors in the space vector diagram. Then, the switching sequence

selection and dwell time calculation are performed using the method presented in [95].

Two low-pass filters (LPF) are used to prevent noise from affecting the control and the

determination of active voltage vectors. The balancing of the dc-link neutral-point voltage

is achieved by adjusting the time distribution of the redundant voltage vectors within one
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Figure 4.13 Simulated time-domain waveforms of PMSG stator currents
and torque.

single switching period [95, 97]. The dc-link voltage Vo is controlled by a grid-side converter,

which is not shown in Fig. 6.1. For the simulations, Vo is assumed to remain constant. Two

representative simulation results depicting the generator’s currents and electromagnetic torque

for the cut-in and rated wind speeds are provided in Fig. 4.13. There appears to be a periodicity

of 60 electrical degrees in the torque waveform, in the form of minor spikes. This is due to the

phase currents crossing zero, which occurs every 60 electrical degrees. If this happens in the

middle of a switching cycle (which is probably unavoidable), a discontinuity in the generated

voltage occurs, because in the Vienna rectifier the voltage depends on the sign of the current.

This effect can be observed as notches that appear in the current waveforms as they cross zero.

This in turn affects the electromagnetic torque. Further work is necessary to better understand

and mitigate this phenomenon.

The simulation-based loss calculations are superimposed as points connected by dashed

lines on Figs. 4.10 and 4.11 and the annual energy loss is added to Table 4.1. The results

are almost identical to the ones obtained from the fundamental-only method. Apparently,

the PMSG/Vienna rectifier topology is a more efficient system, leading to a 0.9% increase in

annual energy yield. In addition, since the Vienna rectifier generates three voltage levels, the

current through the PMSG has lower harmonic content than in the conventional system, which

is demonstrated by the total harmonic distortion (THD) comparison in Table 4.2.
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Table 4.2 PMSG Current THD Comparison

Wind Speed (m/s)
THD (%)

4 5 6 7 8 9 9.8

6-SW converter 5.81 4.84 4.04 3.58 3.44 3.02 2.98

Vienna rectifier 5.41 4.16 3.20 2.77 3.04 2.91 2.79

4.5 Experimental Results

To verify the feasibility of the PMSG/Vienna rectifier configuration, a small-scale labo-

ratory prototype has been implemented, with parameters provided in Appendix C.2. The

generator was driven at various constant speed values by an identical servo motor. The dc-link

voltage was regulated by a programmable dc power source (Sorensen SGI330X45C), set at

Vo = 50 V. An electronic load (Chroma 63840) was connected in parallel with the dc-link

capacitors to absorb the generated power. The control scheme shown in Fig. 6.1 was imple-

mented on a dSPACE DS1103 system, with a switching frequency of 4 kHz. The controller

was programmed to generate a quadratic torque-speed characteristic (see equation (4.2)), so

that rated shaft power (200 W) is obtained at the rated speed.

Fig. 4.14 depicts the feasible operation region for the laboratory prototype. The drive op-

erates along the MTPA curve for low speeds, then becomes voltage-limited for higher speeds.

The asterisks denote operating conditions that were measured in the laboratory. Fig. 4.15

shows the variation of real power, reactive power, and power factor angle at the generator ter-

minals for the above points. The solid lines represent expected theoretical results, whereas the

asterisks are experimental measurements. These measurements reflect fundamental quantities,

acquired using a Voltech PM6000 power analyzer. The corner point at approximately 0.73 pu

speed is due to the change from the MTPA to the voltage-limited mode of operation.

Fig. 4.16 contains experimental waveforms for two steady-state operating points (corre-

sponding to the lowest and highest speed). The plots depict line-to-line voltage vab and ar-

mature current ia, captured with a Tektronix DPO4034B oscilloscope. At low speeds, the

line-to-line voltage obtains 3 distinct values ({0,±25} V), whereas at higher speeds the voltage

obtains 5 distinct values ({0,±25,±50} V), as expected. Because of the relatively low dc-link
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Figure 4.14 Optimal current operation points for the laboratory prototype.

voltage in the prototype, forward voltage drops in the diodes and IGBTs of the Vienna rectifier

are apparent in the voltage waveforms. Nevertheless, the current waveforms are close to the

simulation results, which are shown in gray.

Fig. 4.17 shows the transient response of the generator under an increase of rotor speed ωr

from 0.415 p.u. up to 0.994 p.u. The amplitude of the generator current is gradually increased.

The two capacitor voltages v1 and v2 are maintained close to their nominal value by means of

the dc-link neutral-point voltage balance control.

4.6 Conclusions

A variable-speed wind energy conversion system based on a permanent-magnet synchronous

generator with Vienna rectifier has been studied. A rigorous mathematical analysis has been

performed, and the restrictions on the system’s operating range imposed by the current, volt-

age, and power factor limitations of the Vienna rectifier have been identified. Even with these

in place, the system can function without problem throughout the entire wind speed range.

Detailed power loss calculations in the power electronics converter and the generator itself are

used to design a control strategy that leads to maximum energy efficiency. Interestingly, the
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proposed configuration is shown to outperform the classical six-switch two-level converter.
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CHAPTER 5. LOW-FREQUENCY AC TRANSMISSION FOR

OFFSHORE WIND POWER

A paper to be submitted to the IEEE Transactions on Power Delivery

Hao Chen1 and Dionysios C. Aliprantis

5.1 Abstract

This paper presents a low-frequency ac (LFAC) transmission system for offshore wind

power. The LFAC system is interfaced with the main power grid with a cycloconverter. The

wind power plant collection system is dc-based, and connects to the LFAC transmission line

with a 12-pulse thyristor converter. A method to design the system’s components and controls

is set forth. Simulation results are provided to illustrate the system’s performance.

5.2 Introduction

Offshore wind power plants are expected to represent a significant component of the fu-

ture electric generation portfolio due to space availability and better wind energy potential

in offshore locations [2, 16]. The integration of offshore wind power plants with the main

power grid is still a subject of active research [15, 29, 98]. For transmission, high voltage ac

(HVAC) is typically used for short distances, whereas high-voltage dc (HVDC) is preferred for

longer distances [13]. Within a wind power plant, a medium-voltage ac collection grid (e.g.,

33 kV) is widely used [6]. Recently, with the development of cost-effective dc circuit breakers,

a medium-voltage dc collection grid has become a feasible alternative [20], suitable for direct

coupling with HVDC transmission. A medium/high-level dc voltage can be built by either

1Primary researcher and author
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using high-power dc-dc converters [99] or by a series connection of wind turbines within the

power plant [100].

Besides HVAC and HVDC, low-frequency ac (LFAC) transmission has been recently pro-

posed [22, 24, 25], where an intermediate frequency level (e.g., 20 Hz) is used. LFAC systems

are based on a cycloconverter that lowers the grid frequency to a smaller value, typically 1/3

of the normal grid frequency. In general, LFAC systems are expected to have higher relia-

bility and lower cost compared to voltage source converter-based HVDC [13,14], but perhaps

their greatest advantage is that they can transmit power over longer distances compared to

an HVAC system. The LFAC transmission could be an optimal solution for medium distance

transmission (i.e., somewhere in between HVAC and HVDC) [25].

In this paper, a novel LFAC transmission topology using thyristor-based converters is an-

alyzed. The main difference of the proposed topology with previous work [24,25] is that a dc

wind power plant collection system is used. Hence, the wind turbines would not need to be

redesigned to output low-frequency ac power, which would lead to larger, heavier, and costlier

magnetic components (i.e., step-up transformers and/or generators). In particular, dc col-

lection systems can be formed by interconnecting multi-MW permanent-magnet synchronous

generators with fully rated converters, which tend to be the generator type of choice for offshore

applications. Another advantage of the proposed scheme is its feasibility for multi-terminal

transmission systems, instead of multi-terminal HVDC [101, 102], but the analysis of such an

application is out of the scope of the present study.

The objective of this paper is to set forth the details of how an LFAC system for point-

to-point transmission could be designed. The system configuration and control strategies

are outlined in Section 5.3. The selection of the major system components is discussed in

Section 5.4.1, and filter design is discussed in Section 5.4.2. A design example and time-domain

simulation study of the proposed LFAC system are provided in Section 5.5 and Section 5.6,

respectively. Section 5.7 concludes the paper.
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Figure 5.1 Configuration of the proposed LFAC transmission system.

5.3 System Configuration and Control

The proposed LFAC transmission system is shown in Fig. 5.1. At the sending end, a

medium-voltage dc collection bus is formed by rectifying the ac output power of series-connected

wind turbines [52]. A dc current source Iw represents the total power delivered from the wind

turbines. A dc/ac 12-pulse thyristor-based inverter is used to generate low-frequency (20 Hz)

ac power. It is connected to a three-winding transformer that raises the voltage to a higher

level, for transmission. AC filters are used to suppress the 11th, 13th, and higher-order (≥23rd)

current harmonics, and to supply reactive power to the converter. A smoothing reactor (R-L)

is connected at the inverter’s dc terminals. At the receiving end, a three-phase bridge (6-pulse)

cycloconverter with 36 thyristors is used as an interface between the low-frequency transmis-

sion line and the 60-Hz power grid. Lf -Cf is the cycloconverter’s filter at the low-frequency

side. At the grid side, AC filters are used to suppress odd current harmonics, and to supply

reactive power to the cycloconverter.

5.3.1 Sending End Control

The control structure for the sending-end inverter is shown in Fig. 5.2. The controller

regulates the dc bus voltage VDC by adjusting the voltage V at the inverter terminals. The



www.manaraa.com

68

DCV

Wind 

Turbines

1 2 -pulse

Inverter

wI

DC Bus

C

L RDCi

1

3

Sn

2 0 Hz

Voltage

AC Filters

PLL

s > 2 3 rd1 3 th1 1 th

*V*

DCV

DCV

PI

Firing Pulse 

Generator

Cosine Wave Crossing

 s 
PV

V

*V
6 6 S

P

S

V
V

n!
"

S#

SV

Figure 5.2 Sending end DC/AC inverter control.

cosine wave crossing method [26] is applied to determine the firing angle αS , which is

αS = arccos
V ∗

VP
, (5.1)

where VP is the peak value of the cosine wave. Note that V ∗ < 0 and 90◦ < αS < 180◦ (using

common notation), since the converter is in the inverter mode of operation [103]. V and VS

(line-to-neutral, rms) are related by [97]:

V =
6
√
6VS

πnS
cosαS . (5.2)

A phase-locked loop (PLL) provides the angular position of the ac side voltage, which is

necessary for generating the firing pulses of the thyristors. It also outputs the rms value of the

fundamental component of the voltage, which is used in the firing angle calculation.

5.3.2 Receiving-End Control

The structure of the cycloconverter controller at the receiving end is illustrated in Fig. 5.3.

The goal is to provide a constant 20-Hz voltage of given rms value V ∗
R (line-to-neutral) at the
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receiving end. The fundamental component of the receiving end voltage VR is obtained with

the signal conditioning logic depicted in Fig. 5.4.

The firing angles are determined with the cosine wave crossing method, as shown in Fig. 5.5,

which uses phase-a as an example. αaP and αaN are the firing angles of the phase-a positive

and negative converter, respectively (denoted as ‘aP ’ and ‘aN ’ in Fig. 5.3). For the positive

converter, the average voltage at the 20-Hz terminals is given by [97]:

VaP =
3
√
6VG

πnR
cosαaP , (5.3)

where VG is the rms value of the line-to-neutral voltage at the grid side, and nR is the turns ratio

of the transformers. The condition αaP +αaN = π ensures that average voltages with the same

polarity are generated from the positive and negative converter at the 20-Hz terminals [104].

However, the firing pulses SaP and SaN are not simultaneously applied to both converters, in

order to obtain a non-circulating current mode of operation. This functionality is embedded

in the ‘Bank Selector’ block of Fig. 5.3, which operates based on the filtered current îcyc,abc.
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Note (for later use) that the maximum line-to-neutral rms value of the 20-Hz cycloconverter

voltage is [26]

V max
cyc =

3
√
3VG

πnR
, (5.4)

and that a voltage ratio is defined as

r =
Vcyc

V max
cyc

. (5.5)

In practice, the theoretical maximum value r = 1 cannot be achieved, due to the transformers’

leakage inductance, which was ignored in the analysis.
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5.4 System Design

5.4.1 Main Power Components

The main power components are selected based on a steady-state analysis of the LFAC

transmission system shown in Fig. 5.1, under the following assumptions:

• Only fundamental components of voltages and currents are considered. The receiving

end is modeled as a 20-Hz voltage source of nominal magnitude.

• The power losses of the reactor, thyristors, filters, and transformers are ignored.

• The resistances and leakage inductances of transformers are neglected.

• The AC filters are represented by an equivalent capacitance corresponding to the funda-

mental frequency.

• The design is based on rated operating conditions (i.e., maximum power output).

At the steady state, the average value of the dc current IDC is equal to Iw, so the power

delivered from the wind turbines is

Pw = VDCIDC = VDCIw . (5.6)

For the 12-pulse converter, the rms value of the current at the transmission side is [97]:

I =
2
√
6

π

IDC

nS
=

2
√
6

π

Iw
nS

. (5.7)

Hence, (5.7) can be written as

I = MPw , (5.8)

with

M =
2
√
6

πnSVDC
. (5.9)

Let ṼS = VS∠0
◦ and Ĩ denote phasors of the line-to-neutral voltage and line current, respec-

tively. Since −Ĩ lags ṼS by αS [97], it follows that Ĩ = I∠(180◦ − αS). So, the active power

delivered by the 12-pulse inverter is given by

PS = Pw = 3VSI cos(αS − 180◦) = −3VSI cosαS > 0 . (5.10)
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Substitution of (5.8) into (5.10) yields

cosαS = − 1

3MVS
(5.11)

and

sinαS =

√

1− 1

9M2V 2
S

. (5.12)

The reactive power generated from the 12-pulse inverter is

QS = 3VSI sin(αS − 180◦) = −3VSI sinαS . (5.13)

From (5.10)–(5.13), it follows that

QS = PS tanαS = −PS

√

9M2V 2
S − 1 . (5.14)

The negative sign in (5.13) and (5.14) indicates that the 12-pulse inverter always absorbs

reactive power. Equation (5.14) shows that QS can be expressed as a function QS = f(PS , VS).

Based on the above analysis, the steady-state single-phase equivalent circuit of the LFAC

transmission system is shown in Fig. 5.6. Ceq is the equivalent capacitance of the sending-

end AC filters at fundamental frequency. The transmission line is modeled by a Π-equivalent

(positive-sequence) circuit using lumped parameters. The well-known hyperbolic trigonometric

expressions for Z ′ and Y ′

2 are used [105]. Given a power rating of a wind power plant Prated, the

maximum reactive power that is absorbed by the 12-pulse inverter can be estimated according

to (5.14), which yields

Qrated = Prated

√

3M2V 2
o − 1 , (5.15)

where Vo is the nominal transmission voltage level (line-to-line rms).

Here, it is assumed that the sending-end AC filters supply the rated reactive power to the

inverter. Therefore,

Ceq =
Qrated

ωeV 2
o

, (5.16)

where ωe = 2π20 rad/s. In addition, the apparent power rating of the transformer at the

sending end StS should satisfy

StS >
√

P 2
rated +Q2

rated =
√
3PratedMVo . (5.17)
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At the 60-Hz grid side, the reactive power capacity of the AC filters and the apparent power

rating of the transformers depend on the cycloconverter’s voltage ratio r, which is a design

parameter, and the 20-Hz side power factor [104], which can be estimated as follows.

For a given transmission cable, the voltage ratings (nominal and maximum voltage), the

current rating, and the distributed cable parameters (resistance, inductance, and capacitance

per unit length) are known. Here, it is assumed that a power cable is chosen to transmit the

rated wind power plant power Prated without violating the cable’s voltage and current ratings.

(The relationship between active power through the cable and maximum transmission distance,

given a certain cable, will be discussed later.) For simplicity, it is further assumed that the rms

value of line-to-line voltage at both sending and receiving ends is Vo and the current through

Z ′ and Lf is approximately equal to the current rating of the cable Irated.

Since the AC filters are designed to supply all reactive power to the 12-pulse inverter at the

sending end, the reactive power injected into the cycloconverter’s 20-Hz side can be estimated

using

Q20
cyc ≈ Im{Y ′}V 2

o + ωe3CfV
2
o − 3I2ratedIm{Z ′} − 3I2ratedωeLf , (5.18)

where the first two terms represent the reactive power generated from the cable and the LC

filter’s capacitor, and the last two terms represent the reactive power consumed by the cable

and the LC filter’s inductor. The active power injected into the cycloconverter from the 20-Hz

side can be estimated using

P 20
cyc ≈ Prated − Re{Y ′}V 2

o − 3I2ratedRe{Z ′} , (5.19)

where the last two terms represent the power loss of the cable. Thus, the 20-Hz side power

factor can be estimated according to (5.18) and (5.19).

Now the 60-Hz side power factor PF60 at the transformers’ grid-side terminals can be

obtained using the method presented in [104, Ch. 12, p. 358]. Then the apparent power rating

of each out of the three receiving-end transformers StR should satisfy

StR >
P 20
cyc

(3)(PF60)
. (5.20)
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Also, it is assumed that the grid-side AC filters are designed to supply the rated amount of

reactive power to the cycloconverter.

5.4.2 Filter Design

At the sending end, the 12-pulse inverter produces harmonics of order m = 12k ± 1,

k = 1, 2, · · · , and can be represented as a source of harmonic currents (im in Fig. 5.7). These

current harmonics are filtered by two single-tuned filters for the 11th and 13th harmonics, and

one damped filter for higher-order harmonics (≥23rd). Generally, the filter design is dependent

on the reactive power that the filter supplies at fundamental frequency (also known as the filter

size) and the required quality factor Q [106]. The total reactive power requirement of these

filters can be estimated based on (5.15). Here, it is assumed that the total reactive power

requirement is divided equally among the three filters. The quality factor for each filter can be

determined using the method presented in [106, Ch. 6]. A high quality factor (Q = 100) is used

for the single-tuned filters, and a low quality factor (Q = 1) is used for the high-pass damped

filter. Finally, with the capacitance and quality factor known, the inductance and resistance of
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each filter can be determined. With such filter design, the 12-pulse-related current harmonics

originating at the sending end are essentially absent from the transmission line.

At the receiving end, there are two groups of filters which include the AC filters at the 60-

Hz side and the LC filter at the 20-Hz side. At the 60-Hz side, if the cycloconverter generates

exactly 60/3 = 20 Hz, it can be shown [104, Ch. 12, pp. 360–363] that the line current has

only odd harmonic components, i.e., 3rd, 5th, 7th,· · · . Here, three single-tuned filters and one

damped filter are used to prevent these harmonic currents from being injected into the 60-Hz

power grid. These filters are designed with a procedure similar to that for the AC filters at

the sending end.

At the 20-Hz side, the line-to-neutral voltage has harmonics of order 3, 5, 7, · · · [104, Ch. 11,

pp. 306–313]. However, the harmonic components of order equal to integer multiples of three

are absent in the line-to-line voltage. Therefore, as seen from the 20-Hz side, the cycloconverter

acts as a source of harmonic voltages of orders n = 6k ± 1, k = 1, 2, · · · (vcycn in Fig. 5.7). The

design of the LC filter has two objectives:

1. to decrease the amplitudes of the voltage harmonics generated by the cycloconverter;

2. to increase the equivalent harmonic impedance magnitudes seen from the receiving end,

indicated by ZR(ωn) in Fig. 5.7.

The design procedure presented here takes into account the voltage harmonics of order 5,

7, 11, and 13. For cycloconverters, the amplitude of the voltage harmonics only depends on the

voltage ratio r and the fundamental power factor at the 20-Hz side, under the assumption of

sinusoidal output current [104], which is sufficient for design purposes. Generally, the voltage

harmonics tend to become worse with decreasing r. Here, we set r = 0.9. Fig. 5.8 illustrates the

relationship between the per unit amplitudes of the voltage harmonics under consideration (5th,

7th, 11th, and 13th) and the power factor angle φ, computed based on formulas in [104, Ch. 11,

p. 303]. Apparently, for the 5th and 7th voltage harmonics, the amplitudes are symmetric with

respect to φ = 0◦, and positive φ (i.e., reactive power consumption by the cycloconverter) can

result in reduced amplitudes of the 11th and 13th voltage harmonics. At φ ≈ 85◦, minimum
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Figure 5.8 Harmonic voltage amplitudes generated by the cycloconverter
at the 20-Hz side.

amplitudes are obtained. However, this value is unacceptably low, so φ = 35◦ is selected (for

operation at rated power).

After φ has been determined, it follows from (5.18) and (5.19) that there is a linear relation

between Lf and Cf , as in Cf = aLf + b, since tan φ = Q20
cyc/P

20
cyc. However, any (Lf , Cf )

pair determined based on this equation should only be used as an initial guess. These initial

parameters might not yield the required power factor angle (φ = 35◦) due to the simplifying

assumptions made in the analysis. The proper LC filter parameters can be obtained by solving

the circuit shown in Fig. 5.6.2 For example, given a value for Lf , the capacitance Cf that

leads to the right power factor angle can be found by searching around its initial guess value.

Therefore, if Lf varies within a certain range, a number of (Lf , Cf ) pairs can be obtained.

Among these (Lf , Cf ) candidates, a selection is made such that the magnitudes |ZR(ωn)| for

n = 5, 7, 11, 13 are deemed to be adequately large. A numerical example will be provided in

the next section.

2The circuit can be solved by formulating this as a three-bus power flow problem, where the sending end is
a PQ-type bus. Since QS = f(PS , VS), the power flow is solved for a range of QS values, until the computed
VS provides the correct value of QS, when substituted in f(·).
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5.5 Case Study

In this section, a design case study of a 20-Hz LFAC transmission system is presented. The

transmission voltage level is chosen as 132 kV. An appropriate submarine three-core XLPE

power cable is selected (nominal voltage: 132 kV, maximum voltage: 145 kV, rated current:

825 A, cross section: 1000 mm2, copper conductor). The cable’s resistance, inductance, and

capacitance per km are 17.6 mΩ/km, 0.35 mH/km, and 0.25 µF/km, respectively [107,108].

The LFAC system is compared to a conventional 60-Hz HVAC transmission system that

uses the same power cable, with a steady-state single-phase equivalent circuit shown in Fig. 5.9.

Xsc represents the short-circuit level of the 60-Hz power grid. Shunt reactive compensation

(XS and XR in Fig. 5.9) is connected at both ends to improve the active power transmission

capability, especially for long transmission distances [109]. The power grid voltage is 132 kV

line-to-line. The short-circuit level is Ssc = 5, 000 MVA, which is a typical value for a 132-kV

system [110]. At the sending end, unity power factor is assumed (QS = 0), in order to calculate

the maximum possible transmissible active power through the cable. Two cases are considered:

1. No shunt reactive compensation, i.e., XS = XR = 0. This case is denoted as ‘60-Hz 0/0’.

2. Shunt reactive compensation split equally between the two ends. This case is denoted

as ‘60-Hz 50/50’. The total amount of reactive compensation is QX = Im{Y ′}V 2
o , so

XS = XR = 2V 2
o /QX .

The relationship between sending end active power PS and maximum transmission distance

is calculated using the circuit of Fig. 5.9, and plotted in Fig. 5.10. The maximum transmis-

sion distance is obtained whenever the current or the voltage rating of the power cable is
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reached. In this case study, the cable’s rated apparent power is 188 MVA. The maximum

distance for transmitting 180 MW is 45 km without shunt compensation, and 70 km with

shunt compensation.

The 20-Hz LFAC system is designed to transmit 180 MW over 160 km. At the sending

end, the dc bus voltage level is chosen as 30 kV. A 214-MVA, 132/13.2 kV (nS = 10), 20-Hz

phase-shift transformer is used. With the 20-Hz rated frequency, this transformer would have

larger volume compared to 60-Hz transformers. This is a drawback of the proposed LFAC

system. The total size of the AC filters at the sending end is 115 MVAr.

For the cycloconverter, the voltage (line-to-line) generated at the 20-Hz side is 132 kV.

The voltage ratio is selected as r = 0.9, and the 20-Hz side power factor angle is designed to

be φ = 35◦. According to (5.4) and (5.5), the transformer ratio is nR = 1.5, and the 60-Hz side

power factor is PF60 ≈ 0.68 [104]. Based on the analysis of Section 5.4.1 and equation (5.20),

the apparent power rating of each cycloconverter transformer is chosen to be 100 MVA. The

total size of AC filters at the 60-Hz side is 200 MVAr.

Fig. 5.11 depicts the approximate linear relation between Lf and Cf by a dashed line. The

more accurate capacitance values that yield the required power factor angle are represented

by the solid curve. A solution is found for Lf between 7 mH and 63 mH. Note that a solution

can be obtained for Lf outside this range as well; however, in this case, either the current or
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the voltage rating of the power cable are violated. Fig. 5.12 shows the variation of |ZR(ωn)|

corresponding to the feasible (Lf , Cf ) pairs. It can been that the LC filter with Lf = 63 mH

and Cf = 8.7 µF gives the maximum impedance magnitudes for the 5th, 11th, and 13th

harmonics.

Finally, based on the above system parameters, the relationship between sending-end active

power and maximum transmission distance for the 20-Hz LFAC system is calculated and su-

perimposed in Fig. 5.10. It can be observed that the proposed LFAC system is a feasible option

for delivering the rated power over a distance ca. 2-3 times further than the HVAC solution.

Typically, for distances longer than 100 km, HVDC systems are the preferred solution [13], but

an LFAC system could be an alternative transmission technology for the 100-200 km range, at

least from a technical standpoint.
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5.6 Simulation Results

To demonstrate the validity of the proposed LFAC system, simulations have been carried

out using Matlab/Simulink and the Piecewise Linear Electrical Circuit Simulation (PLECS)

toolbox [59]. The wind power plant is rated at 180 MW, and the transmission distance is

160 km. The system parameters are listed in Table 5.1. The parameters of the PI controllers

in Fig. 5.2 and Fig. 5.3 are listed in Table C.1. The transmission power cable is modeled by

cascading 20 identical Π sections.

Fig. 5.13 shows the steady-state line-to-line voltage and current waveforms at the sending

end, the receiving end, the 20-Hz side of the cycloconverter, and the 60-Hz power grid side under

rated power conditions. The 20-Hz voltage generated from the cycloconverter has significant

harmonic distortion (THD is 16.4%). Due to the LC filter, the voltages at the receiving end

and the sending end have reduced THD values (3.2% and 2.2%, respectively). The measured

fundamental power factor angle φ at the 20-Hz side of the cycloconverter is 33◦, which is close

to the design requirement.

Fig. 5.14 depicts the results of a transient simulation where the power from wind turbines

Pw ramps from 170 MW to 180 MW, at 10 MW/s. Shown are the transient responses of the

active power injected into the 60-Hz power grid, the dc bus voltage at the sending end, and

the magnitude of the fundamental component of the 20-Hz voltage at the receiving end.

5.7 Conclusion

A low-frequency ac transmission system has been proposed. The methodology to design

the system’s components and control strategies has been discussed. The use of low frequency

can improve the transmission capability of submarine power cables due to low cable charging

current. The proposed LFAC system appears to be a feasible solution for the integration of

offshore wind power plants over long distances. Technically, it could be used to substitute

HVDC systems. Furthermore, it is easier to establish a low-frequency ac network to transmit

bulk power from multiple plants.

In order to help the wind energy industry to make a better-informed decision for the trans-
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Figure 5.13 Simulated voltage and current waveforms.

mission type for offshore wind power, it is of significance to perform a complete technical and

economic comparison among HVAC, HVDC, and LFAC, e.g., transmission efficiency, transient

stability, and investment evaluation. The above are subjects of ongoing work.
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Table 5.1 LFAC System Simulation Parameters

Sending End

DC Bus Capacitor C = 1000 µF

Smoothing Inductor L = 0.1 H, R = 1 mΩ

20-Hz Phase-shift Transformer

Rated Power 214 MVA Voltage 132/13.2 kV

Winding Leakage

Resistance
0.001 p.u.

Reactance
0.05 p.u.

Magnetizing Magnetizing

Resistance
1000 p.u.

Reactance
200 p.u.

AC Filters (115 MVAr, 132 kV, 20 Hz)

R (Ω) L (mH) C (µF)

11 th 0.41 29.7 17.6

13 th 0.35 21.3 17.6

> 23 rd 19.7 6.8 17.6

Transmission Power Cable (132 kV)

Resistance 17.6 mΩ/km Inductance 0.35 mH/km

Capacitance 0.25 µF/km Rated Current 825 A

Receiving End

LC Filter Lf = 63 mH, Cf = 8.7 µF

Transformers

Rated Power 100 MVA Voltage 132/88 kV

Winding Leakage

Resistance
0.001 p.u.

Reactance
0.05 p.u.

Magnetizing Magnetizing

Resistance
1000 p.u.

Reactance
200 p.u.

AC Filters (200 MVAr, 132 kV, 60 Hz)

R (Ω) L (mH) C (µF)

3 rd 1.16 102.7 7.6

5 th 0.70 37.0 7.6

7 th 0.50 18.9 7.6

> 9 th 38.7 11.4 7.6
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Table 5.2 Parameters of PI Controllers with Transfer Function K(1 + 1
τs
)

Sending end Receiving end

K 1 0.125

τ 0.4 0.05
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CHAPTER 6. DYNAMIC SIMULATION OF DFIG WIND TURBINES

ON FPGA BOARDS

A paper published in the Proceedings of the Power and Energy Conference at Illinois, 2010

Hao Chen1, Song Sun, Dionysios C. Aliprantis, and Joseph Zambreno

6.1 Abstract

This paper presents the implementation of a dynamic simulation of a doubly fed induction

generator (DFIG)-based wind turbine on a field-programmable gate array (FPGA) board. The

explicit fourth-order Runge–Kutta numerical integration algorithm is used to obtain the system

dynamic response. The FPGA simulation results and speed improvement are validated versus

a Matlab/Simulink simulation. Using FPGAs as computational engines can lead to significant

simulation speed gains when compared to a typical PC computer, especially when operations

can be efficiently parallelized on the board.

6.2 Introduction

A field-programmable gate array (FPGA) is a reconfigurable digital logic platform, which

allows for the parallel execution of millions of bit-level operations in a spatially programmed

environment. Research has been under way on the modeling and real-time simulation of various

electrical power components using FPGAs as computational [41–44] and non-computational [46,

47] devices. Herein, the goal is to implement an entire dynamic simulation of a doubly fed

induction generator (DFIG) wind turbine system on a single FPGA board as fast as possible

(i.e., without being constrained by the requirement of real-time simulation).

1Primary researcher and author
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The individual mathematical operations required by numerical integration algorithms are

generally simple in terms of required logic (additions and multiplications). Hence, hardware

implementations can be used to increase efficiency by reducing the overhead introduced by

software, thus leading to simulation speed gains of two orders of magnitude when compared to

PCs. Moreover, complex systems requiring the simultaneous solution of numerous differential

equations for simulation are inherently conducive to a parallel mapping to physical computa-

tional resources. Therefore, an FPGA becomes an attractive choice for simulating complex

electrical power and energy systems. Herein, a DFIG wind turbine system model is designed

using very high speed integrated circuit hardware description language (VHDL), synthesized

and verified using Xilinx integrated software environment (ISE). The basic steps of designing

an explicit fourth-order Runge–Kutta (RK4) numerical ordinary differential equation (ODE)

solver on the FPGA platform are outlined.

6.3 Modeling and Control

6.3.1 Induction Machine and Wind Turbine Model

The fifth-order induction machine model in the stationary reference frame is given by [53]:

vsqs = Rsi
s
qs + p(Lsi

s
qs + Lmi′sqr) (6.1)

vsds = Rsi
s
ds + p(Lsi

s
ds + Lmi′sdr) (6.2)

v′sqr = R′
ri

′s
qr − ωr(L

′
ri

′s
dr + Lmisds) + p(L′

ri
′s
qr + Lmisqs) (6.3)

v′sdr = R′
ri

′s
dr + ωr(L

′
ri

′s
qr + Lmisqs) + p(L′

ri
′s
dr + Lmisds) (6.4)

pωr =
P
2J (Te − Tm −B 2

P
ωr) (6.5)

Te = 0.75PLm(isqsi
′s
dr − isdsi

′s
qr) (6.6)

where p = d
dt

is the differentiation operator; Rs and R′
r are the stator and rotor resistances;

Ls and L′
r are the stator and rotor inductances; Lm is the magnetizing inductance; vsqs, v

s
ds,

isqs, and isds are the qd-axes stator voltages and currents; v′sqr, v
′s
dr, i

′s
qr, and i′sdr are the qd-axes

rotor voltages and currents; ωr is the rotor angular electrical speed; Tm and Te are mechanical
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and electromagnetic torque; P is the number of poles; J is the total rotor inertia; and B is a

friction coefficient.

The wind turbine model is based on the relation between the upstream wind speed vw and

the mechanical power Pm extracted from the wind [48]. The pertinent equations are

Pm = 1
2ρπR

2
wcp (λ, β) v

3
w (6.7)

cp (λ, β) = 0.5176
(

116
λi

− 0.4β − 5
)

e
−21

λi + 0.0068λ (6.8)

1

λi
=

1

λ+ 0.08β
− 0.035

β3 + 1
(6.9)

where ρ is the air density; Rw is the wind turbine radius; cp (λ, β) is the performance coefficient;

β is the pitch angle in degrees; and λ is the tip-speed ratio given by λ = ωwRw/vw, where ωw is

the wind turbine rotor speed. Note that the relation between ωw and ωr is determined by the

gearbox ratio. For β = 0, the performance coefficient attains its maximum value cmax
p = 0.48

for an optimal λop = 8.10. The mechanical torque applied to the generator shaft is Tm = P
2
Pm

ωr
.

6.3.2 DFIG Control

An essential characteristic of DFIG control strategy is that the generated active and re-

active powers can be controlled independently. It is common to use the air-gap flux oriented

vector control [111] or the stator flux oriented vector control [5,112,113], under the assumption

of negligible stator resistances. In particular, it has been shown that stator flux orientation

can cause instability under certain operating conditions [114]. Herein, a stator voltage ori-

ented vector control without the assumption of negligible stator resistances is presented. The

overall control structure of back-to-back pulse-width modulated (PWM) converters is shown

in Fig. 6.1. The reference frame transformation matrices Ks
s, K

s
r, K

e
s,

sKe, eKs, and eKr are

defined in [53].
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6.3.2.1 Rotor current control

Aligning the stator voltage vector with the q-axis, the induction machine voltage equations

in the synchronous reference frame can be written as

Vs = Rsi
e
qs + ωeλ

e
ds + pλe

qs (6.10)

0 = Rsi
e
ds − ωeλ

e
qs + pλe

ds (6.11)

v′eqr = R′
ri

′e
qr + (ωe − ωr)λ

′e
dr + pλ′e

qr (6.12)

v′edr = R′
ri

′e
dr − (ωe − ωr)λ

′e
qr + pλ′e

dr (6.13)

where Vs is the stator voltage amplitude, and ωe is the stator voltage angular frequency. The

rotor flux linkage equations are

λ′e
qr = L′

ri
′e
qr + Lmieqs = (Lm/Ls)λ

e
qs + σL′

ri
′e
qr (6.14)

λ′e
dr = L′

ri
′e
dr + Lmieds = (Lm/Ls)λ

e
ds + σL′

ri
′e
dr (6.15)

where σ = 1− L2
m/LsL

′
r. Substituting (6.14) and (6.15) into (6.12) and (6.13) yields

v′e∗qr = v′eqr = R′
ri

′e
qr + σL′

rpi
′e
qr + vq

= Kq

(

1 +
1

τqs

)

(i′e∗qr − i′eqr) + vq (6.16)

v′e∗dr = v′edr = R′
ri

′e
dr + σL′

rpi
′e
dr + vd

= Kd

(

1 +
1

τds

)

(i′e∗dr − i′edr) + vd (6.17)

where vq and vd are compensating feedforward voltages given by

vq =
Lm

Ls
pλe

qs + (ωe − ωr)[σL
′
ri

′e
dr +

Lm

Ls
λe
ds] (6.18)

vd = Lm

Ls
pλe

ds − (ωe − ωr)[σL
′
ri

′e
qr +

Lm

Ls
λe
qs] (6.19)

and Kq, τq, Kd, and τd are parameters of two PI current controllers. The stator flux linkages

(λe
qs, λ

e
ds) are computed from the stator and rotor current measurements. The derivatives pλe

qs

and pλe
ds are obtained from (6.10) and (6.11).
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6.3.2.2 Torque and power control

The optimal electromagnetic torque reference T ∗
e shown in Fig. 6.1, after compensating for

the friction losses, is given by [5, 112]

T ∗
e =

P

2

K3
1K2 c

max
p ω2

r

λ3
op

−B
2

P
ωr (6.20)

where K1 = 2Rw/GP , K2 =
1
2ρπR

2
w, and G is the gearbox ratio.

6.3.2.3 Grid-side converter control

The purpose of the grid-side converter is to regulate the DC-link voltage [112]. The vector

control approach shown in Fig. 6.1 is used. Aligning the stator voltage vector with the q-axis,

the voltage equations in the synchronous reference frame can be written as

veqs = Vs = Rieq + Lpieq + ωeLi
e
d + veq (6.21)

veds = 0 = Ried + Lpied − ωeLi
e
q + ved (6.22)

where R and L are the resistance and inductance of the current’s filter inductors, and veq , v
e
d,

ieq, and ied are the qd-axis converter input voltages and currents. From (6.21) and (6.22), the

converter voltage references ve∗q and ve∗d are

ve∗q = veq = −
(

Rieq + Lpieq
)

+ Vs − ωeLi
e
d

= −Kqg

(

1 +
1

τqgs

)

(ie∗q − ieq) + Vs − ωeLi
e
d (6.23)

ve∗d = ved = − (Ried + Lpied) + ωeLi
e
q

= −Kdg

(

1 +
1

τdgs

)

(ie∗d − ied) + ωeLi
e
d (6.24)

where Kqg, τqg, Kdg, and τdg are parameters of two PI current controllers. Herein, ie∗d is

arbitrarily set to zero in order to set the stator-side reactive power to zero, but this is not

always necessary in practice.
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6.4 FPGA Implementation

6.4.1 Simulation Architecture

The transient response of the system is obtained by the RK4 numerical integration al-

gorithm [115]. This is a fixed-step explicit integration algorithm, which is based on simple

numerical calculations (additions and multiplications), and is thus straightforward to imple-

ment on the FPGA. The RK4 method for the initial value problem (px = f(t,x),x(t0) = x0)

is described by:

xn = xn−1 +
h
6 (k1 + 2k2 + 2k3 + k4) (6.25)

tn = tn−1 + h (6.26)

where xn is the RK4 approximation of x(tn) (i.e., the exact solution), h is the time step, and

k1 = f (tn−1,xn−1) (6.27)

k2 = f (tn−1 + 0.5h,xn−1 + 0.5hk1) (6.28)

k3 = f (tn−1 + 0.5h,xn−1 + 0.5hk2) (6.29)

k4 = f (tn−1 + h,xn−1 + hk3) . (6.30)

The ODEs representing the entire DFIG system, expressed in the form px = f(t,x), are

derived by combining the induction machine model, wind turbine model and DFIG control

strategy. The state variables are isqs, i
s
ds, i

′s
qr, i

′s
dr, ωr, the integrators of four PI controllers for

the rotor-side converter (x6, x7, x8, and x9), the three-phase RL circuit qd currents in the

stationary reference frame (isq and isd), the DC-link voltage vdc, and the integrators of three PI

controllers for the grid-side converter (x13, x14, and x15). The input variables are vsqs, v
s
ds, the

wind speed vw, the pitch angle β, the reactive power reference Q∗
s, the DC-link voltage reference

v∗dc, and the three-phase RL circuit d-axis current reference in the synchronous reference frame

ie∗d . The output variables are the stator-side active and reactive power.

As shown in Fig. 6.2, four functional modules are used to establish the entire system. The

“Stator Voltage Input” module is responsible for the generation of vsqs and vsds. The “ODE

Function” and “Vector Update” modules constitute the RK4 solver. The “Output” module
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Figure 6.2 FPGA implementation of DFIG wind turbine system

implements the calculation of the stator-side active and reactive power (Ps and Qs) and the

machine rotor qd-axes currents in the synchronous reference frame (i′eqr and i′edr). These modules

have been developed using VHDL in ModelSim, which is a verification and simulation tool for

VHDL designs. All variables and parameters are represented as signed fixed-point numbers

with 13 bits representing the integral part, and 32 bits representing the fractional part. This

provides a numerical range that can accommodate every variable involved in the simulation,

with a resolution of 2−32. For economizing FPGA resources, the per unit system is used in

order to decrease the necessary number of bits (because variables are expected to be close to

1.0).

Every RK4 iteration shown in Fig. 6.3 consists of six steps. The “ODE Function” module

executes the evaluation of f(t,x). The “Vector Update” module is responsible for the alteration

of x in f(t,x) during steps 2, 3, and 4, as well as the calculation of (6.25) in step 5. Since vsqs

and vsds are dependent on the time t, the “Stator Voltage Input” module should generate the

appropriate vsqs and vsds for the “ODE Function” module. Specifically, vsqs(tn−1 + 0.5h) and

vsds(tn−1 + 0.5h) are generated during step 1 and stored for the usage of the “ODE Function”

module in step 2 and step 3, while vsqs(tn−1 + h) and vsds(tn−1 +h) are generated during step 3
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Figure 6.3 RK4 iteration process

and stored for the usage of the “ODE Function” module in step 4 and step 1 of the next

iteration. Note that the “Stator Voltage Input” module and the “ODE Function” module are

executed in parallel in step 1. A similar parallel execution is also performed in step 3. On the

other hand, the “ODE Function” module and the “Vector Update” module have to be executed

in serial pattern because the inputs of one strictly depend on the outputs of the other.

To design a sinusoidal function involved in the ‘Stator Voltage Input’ module, a look-up

table approach is followed [68]. The evaluation of the exponential function involved in (C.1)

is based on the following identities [116]:

ex = 2x log2 e

= 2xi2xf = 2xiexf ln 2, x > 0 (6.31)
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ex = 2x log
2
e

= 2xi−12xf+1 = 2xi−1e(xf+1) ln 2, x < 0 (6.32)

where xi and xf are the integer and fractional part of x log2 e, respectively.
2 Since 0 < xf ln 2 < 1

in (6.31) and 0 < (xf + 1) ln 2 < 1 in (6.32), the 32 bits representing these decimal fractions

can be divided into 3 sections: bits 2−1 to 2−8 (xH), bits 2−9 to 2−16 (xL) and bits 2−17 to

2−32 (xT ). exH and exL are obtained using two exponential look-up tables (named as ‘high

8 table’ and ‘low 8 table’). Each of them contains 256 elements. exT is calculated by Taylor

series expansion (exT ≈ 1 + xT ). Thus,

ex = 2xiexHexL(1 + xT ), x > 0 or

ex = 2xi−1exHexL(1 + xT ), x < 0 .

The multiplication by 2xi or 2xi−1 is executed by a bit-shifting operation.

6.4.2 Synthesis and Implementation

After the functionality and results of all modules designed using VHDL were validated in

the ModelSim environment, the Xilinx ISE was used to develop, synthesize, and verify the sub-

stantial top-level wrapper module together with the DFIG wind turbine system model. The

target FPGA device was Xilinx Virtex-5 XC5VLX330. The post-place and route report pre-

sented the FPGA hardware resources usage as shown in Table 6.1, and the maximum frequency

of the clock signal that can be applied is 221.533 MHz. Generally, the consumption of FPGA

hardware resources increases with the model complexity. Note that the entire design for the

DFIG wind turbine system must fit within the resource limitation of the target FPGA device.

Otherwise, an FPGA device with more hardware resources should be chosen or the model

should be redesigned in order to meet the requirement of the FPGA device. The final system

will be integrated on a development board that features the XC5VLX330 device—for example,

Xilinx Virtex-5 and DDR2 SDRAM multi-application platform board. The simulation output

data will be stored in the memory embedded on the development board.

2For example, if x log
2
e = 2.3, then xi = 2 and xf = 0.3; if x log

2
e = −2.3, then xi = −2 and xf = −0.3.
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Table 6.1 Xilinx Virtex–5 XC5VLX330 resources usage summary

Logic Utilization Used Available Utilization

Number of 86288 207360 41%

Slice Registers

Number of Slice LUTs 80997 207360 39%

(Look Up Tables)

Number of LUT-FF 91913 207360 44%

(Flip Flop) pairs

6.5 Simulation Results

The simulation parameters are shown in Table 6.2. The moment of inertia J was set to 2

kg·m2 (an unrealistically low value) in order to reduce the simulation time required to reach

a steady-state operating condition. An average-value model is used to represent the rotor-side

and grid-side converters shown in Fig. 6.1. The ModelSim clock frequency was (arbitrarily) set

to 200 MHz, a value less than the maximum clock frequency (221.533 MHz) in the post-place

and route report of the Xilinx ISE. The simulation time-step h was 10−4 s.

The exact same DFIG wind turbine system was also implemented in Matlab/Simulink. The

verification of the results coming from ModelSim was performed versus a Simulink simulation

using the ODE23tb solver with a maximum time step of 10−5 s. Fig. 6.4 shows the machine

stator and rotor qd-axes currents in the synchronous reference frame (ieqs, i
e
ds, i

′e
qr, and i′edr), the

stator-side active and reactive power (Ps and Qs), the rotor angular electrical speed ωr, and

the DC-link voltage vdc. The wind speed vw was stepped down from 7 m/s to 5 m/s at t = 1 s,

and the reactive power reference Q∗
s was stepped up from 10 kVAR to 50 kVAR at t = 3 s.

Note that in the per unit system, the value of ieqs is equal to that of Ps and the value of ieds is

equal to that of Qs. The ModelSim waveforms are superimposed on the Simulink waveforms,

but they are so close that differences cannot be distinguished.

To compare simulation speed, we ran the simulation using the ODE45 and ODE23 inte-

gration algorithms of Simulink with maximum step size of 10−4 s (typically the two “simplest”

available solvers), because they are implementations of the explicit Runge–Kutta algorithm,

albeit of a variable-step nature. The simulation speed was further increased by using the “Ac-
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Table 6.2 Simulation parameters

Rs 1.4× 10−3 Ω P 4 β 0◦ τTe 0.0158

R′
r 9.92 × 10−4 Ω ωe 2π60 rad/s C 4000 µF KQs 0.0024

Ls 1.616 mH J 2 kg·m2 R 0.1 Ω τQs 0.0158

L′
r 1.608 mH Prated 2 MW L 1.75 mH Kq,Kd 0.0474

Lm 1.526 mH Rw 35 m v∗dc 700 V τq, τd 0.0135

Vs 690
√

2/3 V G 120 ie∗d 0 A Kqg,Kdg 1.3

B 0.01 N·m·s ρ 1.25 kg/m3 KTe 0.4488 τqg, τdg 0.0023

KVdc
0.5773 τVdc

0.02

celerator” mode of Simulink, which replaces normal interpreted code with compiled code. The

simulation times on an Intel Core2 Duo 2.2 GHz computer were 6.7 s for ODE45 and 4.7 s for

ODE23. The FPGA simulation time predicted by ModelSim was 0.166 s, which represents a

40x speed gain. The simulation time will be further decreased if the clock frequency can be

set to a higher value, if the simulation time step h is increased, or if a lower-order integration

algorithm (e.g., the trapezoidal algorithm) is used.

6.6 Conclusion

This paper presented the FPGA implementation of a DFIG wind turbine system dynamic

simulation, using the RK4 numerical integration algorithm. The entire system has been de-

veloped using VHDL, synthesized using the Xilinx ISE, and will be implemented on an FPGA

board. An optimal VHDL design should be sought for the purpose of economizing FPGA hard-

ware resources, especially when the model has high complexity. A comparison between the

simulation results from FPGA and Simulink demonstrates the validity of this implementation.

The 40x simulation speed gain demonstrates the performance advantage of FPGAs compared

to PC-based simulations.

FPGAs represent an interesting possibility for simulating more complex electrical power

and power electronics-based systems because of their flexibility, high processing rates and

possibility to parallelize numerical integration computations. In principle, FGPAs could be

coupled with other simulation platforms to perform multi-rate co-simulation of complex sys-
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tems. To accelerate the dynamic simulations, FPGAs would simulate faster subsystems that

require smaller integration time steps. However, it has been observed that the data exchange

rate with an FPGA can be a critical bottleneck for developing such co-simulation applications,

especially when it is required to achieve real-time simulation speeds. On the other hand, a

pipeline VHDL design [117, 118] of a DFIG wind energy conversion system can potentially

enable the dynamic simulation of entire wind farms (containing hundreds of turbines) on a

single FPGA board.
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CHAPTER 7. CONCLUSION

7.1 Contributions

This dissertation has presented novel technological solutions for more efficient and reli-

able wind energy conversion systems, wind power transmission systems, and electric system

simulation platforms. The most significant contributions and conclusions of this work can be

summarized as follows.

1. Two novel variable-speed wind energy conversion systems consisting of either a squirrel-

cage induction generator (SCIG) or a permanent-magnet synchronous generator (PMSG)

and a Vienna rectifier, have been proposed and analyzed.

For the SCIG/Vienna rectifier configuration, an LC filter based on a switched capacitor

bank is utilized to obtain a wide speed operational range. The switching and conduction

losses of the power semiconductors in the Vienna rectifier were obtained by simulations,

and compared to the losses incurred by a similar six-switch converter. The results show

that the proposed system has potential to be more efficient and reliable.

For the PMSG/Vienna rectifier configuration, we have identified restrictions on the sys-

tem’s operational range imposed by the current, voltage, and power factor limitations

of the Vienna rectifier. Even with these in place, the system can function throughout

the entire wind speed range. Detailed power loss calculations in the power electronics

converter and the generator itself are used to design a control strategy that leads to max-

imum energy efficiency. Simulation results reveal that this configuration is advantageous

with respect to energy efficiency compared to a traditional six-switch two-level converter.

Two laboratory prototypes have been implemented to validate the analysis and feasibility
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of the proposed systems.

2. A novel low-frequency ac transmission system has been proposed to connect dc collection

based offshore wind power plants with the main onshore power grid.

Control strategies for the 12-pulse thyristor-based converter at the sending end and the

thyristor-based cycloconverter at the receiving end have been devised.

Steady-state and harmonic analyses have been performed to illustrate the process for

determining the major system component parameters.

A design case study has demonstrated the advantage of the proposed LFAC system over

the conventional HVAC system. Time-domain simulation studies are used to illustrate

variables of interest.

3. The FPGA implementation of a DFIG wind turbine system dynamic simulation, using

the RK4 numerical integration algorithm has been presented.

The entire system has been developed using VHDL, synthesized and verified using the

Xilinx ISE. An optimal VHDL design should be sought for the purpose of economizing

FPGA hardware resources, especially when the model has high complexity. A comparison

between the simulation results from FPGA and Simulink demonstrates the validity of this

implementation. The obtained 40x simulation speed gain demonstrates the performance

advantage of FPGAs compared to PC-based simulations.

7.2 Future Work

Based on what has been accomplished so far in this dissertation, several suggestions for

further research work are provided below:

1. The proposed SCIG/Vienna rectifier and PMSG/Vienna rectifier configurations consti-

tute new promising design options that should be investigated in more depth. Impor-

tant issues are related to the economic considerations of these topologies versus classical

counterparts; the effect of the Vienna rectifier on the generator performance, including
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an accurate determination of harmonics-related losses on generator; a detailed system-

level energy loss comparison that includes different types of grid-side converters; the

quantification of the possible reliability enhancement due to the reduced voltage stress

on power electronics switches; alternate control strategies (for example, controller design

using the linear quadratic regulator method) and optimal modulation schemes to improve

system dynamics; and the feasibility of using the proposed configurations to establish dc

collection grids within wind power plants.

2. For wind power transmission systems, the proposed low-frequency ac transmission system

has been demonstrated to be a feasible option for delivering large amount of power over

long distances. A comprehensive and accurate transmission energy loss, taking into

account the loss of the transformers, converters, and AC filters, is a worthwhile topic for

further analysis. In addition, it is of significance to perform a complete technical and

economic comparison among HVAC, HVDC, and LFAC, in order to help the industry to

make better-informed decisions.

3. FPGA represents an interesting possibility for simulating complex electrical power and

power electronics-based systems because of its flexibility, high processing rates and ca-

pability to parallelize numerical integration computations. In principle, FGPA boards

could be coupled with other simulation platforms, for example, RTDS or other PC-based

simulation platforms, to perform multi-rate co-simulation of complex systems. To ac-

celerate the dynamic simulations, FPGA would simulate faster subsystems that require

smaller integration time steps. Moreover, it might be of interest to develop a pipeline

VHDL design of a DFIG wind energy conversion system. With the pipeline design, the

dynamic simulation of an entire wind power plant (containing hundreds of turbines) on

a single FPGA board could be possible.
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APPENDIX A. PARAMETERS OF INDUCTION MACHINE AND

WIND TURBINE

The 4-pole, 60-Hz induction machine parameters are as follows [53]: rated power = 50 hp;

rated voltage (line-to-line rms value) = 460 V; Rs = 0.087 Ω; R′
r = 0.228 Ω; Xls = X ′

lr =

0.302 Ω; Xm = 13.08 Ω. The reactances are expressed in Ω at ωb = 2π60 rad/s. The LC filter

parameters are: C1 = 638 µF, L1 = 1.8 mH, C2 = 370 µF, and L2 = 3.0 mH. The AC voltage

rating of C1 and C2 is chosen as 400 Vrms according to |Ṽm|max in Figs. 2.6 and 2.8.

The wind turbine parameters listed below are chosen such that the rated power and speed

of the machine are reached at the rated wind speed: Rw = 4.8 m; G = 9.3; rated wind speed

= 12 m/s. The performance coefficient is [48]

cp (λ, γ) = 0.5176
(

116
λi

− 0.4γ − 5
)

e
−21

λi + 0.0068λ , (A.1)

with 1
λi

= 1
λ+0.08γ − 0.035

γ3+1 .
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APPENDIX B. WIND TURBINE AND INDUCTION GENERATOR

PARAMETERS FOR SIMULATION AND EXPERIMENTS

B.1 Wind Turbine and Induction Generator Simulation Parameters

For simulation purposes, a 300-kW, 4-pole, 50-Hz induction generator is used, with param-

eters obtained from [119]: rated voltage (line-to-line rms) = 415 V; base voltage = 415/
√
3 V;

base current = 300, 000/
√
3/415 = 417 A; Rs = 0.004 Ω; R′

r = 0.0032 Ω; Xls = 0.0383 Ω,

X ′
lr = 0.0772 Ω; Xm = 1.56 Ω; Λ′

r = 1.08 Vs. The arctangent function representing the main

flux path magnetization is given by [71]

Λm (Im) =
2Md

π
[(Im − ImT ) arctan (τT (Im − ImT ))−

ImT arctan (τT ImT )] +
Md

πτT

[

ln
(

1 + τ2T I
2
mT

)

−

ln
(

1 + τ2T (Im − ImT )
2
)]

+MaIm , (B.1)

where ImT = 156 A, τT = 0.05 A−1, Ma =
Mf+Mi

2 , Md =
Mf−Mi

2 , Mi = 7.0 mH and

Mf = 0.06Mi.

The wind turbine parameters listed below are chosen such that the rated power and speed

of the machine are reached at the rated wind speed: Rw = 17.5 m; G = 32; cut-in wind speed

= 3 m/s; rated wind speed = 10.5 m/s. The performance coefficient is modeled by [48]

cp (λ, γ) = 0.5
(

116
λi

− 0.4γ − 5
)

e
−21

λi , (B.2)

with 1
λi

= 1
λ+0.08γ − 0.035

γ3+1
, where cp(λ, 0) attains its maximum value cmax

p = 0.41 for an optimal

λo = 7.95.
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B.2 Laboratory Prototype Parameters

The experiments were conducted using a 1/4-HP, 4-pole, 60-Hz induction machine with

the following parameters: rated voltage (line-to-line rms) = 208 V; Rs = R′
r = 12.3 Ω; Lls =

L′
lr = 68.6 mH; Lm0 = 0.44 H (unsaturated magnetizing inductance); Λ′

r = 0.40 Vs. The

saturation characteristic parameters in (B.1) are: ImT = 1.22 A, τT = 3 A−1, Mi = Lm0, and

Mf = 0.0167 H.

The prime mover was a separately-excited 1/4-HP dc machine, with parameters: Ra =

6.7 Ω (armature winding resistance); Rf = 263.6 Ω (field winding resistance); Rfx = 412 Ω

(external resistance connected in series with the field winding); La = 0.073 H (self-inductance

of the armature winding); Lf = 11.34 H (self-inductance of the field winding); Laf = 2.62 H

(mutual-inductance between the armature and field winding). The friction coefficient of the

system is F = 0.002 N ·m · s/rad.

The LC filter parameters are: C = 8.1 µF, L = 0.2 H, and RL = 4 Ω (inductor’s resistance).
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APPENDIX C. WIND TURBINE AND PERMANENT-MAGNET

SYNCHRONOUS GENERATOR PARAMETERS FOR SIMULATION

AND EXPERIMENTS

C.1 Wind Turbine Parameters for Analysis and Simulation

The generator is a 16-pole, 60-Hz, 1.5-MW, 1.5-kV PMSG, assumed to be Y-connected,

with the following parameters: Rs = 0.022 Ω; Xq = 1.266 Ω; Xd = 0.662 Ω; λm = 2.984 Vs.

The dc-link voltage Vo is set to 2800 V. The per unit system bases are defined as: base power =

1.5 MVA; base voltage (peak of line-neutral voltage) = 1.5
√

2/3 kV; base current (peak of line

current) = 816.5 A; base speed = 377 rad/s. The maximum stator current Ismax = 1.1 p.u.

The wind turbine parameters are as follows: A = 6362 m2; gearbox ratio = 27; cut-in wind

speed vinw = 4 m/s; rated wind speed vratedw = 9.8 m/s; cut-out wind speed voutw = 25 m/s. The

performance coefficient is modeled by [48]

cp (λ, γ) = 0.5
(

116
λi

− 0.4γ − 5
)

e
−21

λi ,

with 1
λi

= 1
λ+0.08γ − 0.035

γ3+1
. When γ = 0, the performance coefficient reaches its maximum value

cmax
p = 0.411 for an optimal tip-speed ratio λo = 7.955.

The parameters of the PI controllers in Fig. 6.1 are listed in Table C.1. The time constant

of the first-order LPFs is 0.6 ms. The dc-link capacitors are Co = 2000 µF.

C.2 Laboratory Prototype Parameters

The laboratory prototype for a PMSG/Vienna rectifier system is shown in Fig. C.1. The

experiments were conducted using a machine manufactured by ESTUN Automation (model:

EMJ-04APB22). The machine parameters are as follows: Rs = 2.358 Ω; Lq = 8.495 mH;
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Table C.1 Parameters of PI Controllers with Transfer Function K(1 + 1
τs
)

q-axis current d-axis current neutral voltage

K 1.99 1.03 0.008

τ 0.0033 0.0033 0.01

Ld = 7.485 mH; λm = 0.0607 Vs; p = 4; the maximum stator current Ismax = 3.8 A, peak; the

rated electrical frequency and rated power were defined as 100 Hz and 200 W, respectively.

The dc-link voltage was set to Vo = 50 V. The dc-link capacitors are Co = 400 µF.
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Figure C.1 Laboratory prototype.
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